5,537 research outputs found
A new data reduction scheme to obtain the mode II fracture properties of Pinus Pinaster wood
In this work a numerical study of the End Notched Flexure (ENF) specimen was performed
in order to obtain the mode II critical strain energy released rate (GIIc) of a Pinus pinaster wood in the RL crack propagation system. The analysis included interface finite elements and a progressive damage
model based on indirect use of Fracture Mechanics.
The difficulties in monitoring the crack length during an experimental ENF test and the inconvenience of performing separate tests in order to obtain the elastic properties are well known. To avoid these
problems, a new data reduction scheme based on the equivalent crack concept was proposed and validated. This new data reduction scheme, the Compliance-Based Beam Method (CBBM), does not require crack measurements during ENF tests and additional tests to obtain elastic properties.FCT - POCTI/EME/45573/200
Finite element analysis of the ECT test on mode III interlaminar fracture of carbon-epoxy composite laminates
In this work a parametric study of the Edge Crack Torsion (ECT) specimen was performed
in order to maximize the mode III component (GIII) of the strain energy release rate for carbon-epoxy laminates.
A three-dimensional finite element analysis of the ECT test was conducted considering a
[90/0/(+45/-45)2/(-45/+45)2/0/90]S lay-up. The main objective was to define an adequate geometry to obtain an almost pure mode III at crack front. The geometrical parameters studied were specimen dimensions, distance between pins and size of the initial crack.
The numerical results demonstrated that the ratio between the specimen length and the initial crack length had a significant effect on the strain energy release rate distributions. In almost all of the tested
configurations, a mode II component occurred near the edges but it did not interfere significantly with the dominant mode III state.FCT - POCTI/EME/45573/200
Bloch-like oscillations in a one-dimensional lattice with long-range correlated disorder
We study the dynamics of an electron subjected to a uniform electric field
within a tight-binding model with long-range-correlated diagonal disorder. The
random distribution of site energies is assumed to have a power spectrum with . Moura and Lyra [Phys. Rev. Lett. {\bf
81}, 3735 (1998)] predicted that this model supports a phase of delocalized
states at the band center, separated from localized states by two mobility
edges, provided . We find clear signatures of Bloch-like
oscillations of an initial Gaussian wave packet between the two mobility edges
and determine the bandwidth of extended states, in perfect agreement with the
zero-field prediction.Comment: 4 pages, 5 figure
On Deciding Local Theory Extensions via E-matching
Satisfiability Modulo Theories (SMT) solvers incorporate decision procedures
for theories of data types that commonly occur in software. This makes them
important tools for automating verification problems. A limitation frequently
encountered is that verification problems are often not fully expressible in
the theories supported natively by the solvers. Many solvers allow the
specification of application-specific theories as quantified axioms, but their
handling is incomplete outside of narrow special cases.
In this work, we show how SMT solvers can be used to obtain complete decision
procedures for local theory extensions, an important class of theories that are
decidable using finite instantiation of axioms. We present an algorithm that
uses E-matching to generate instances incrementally during the search,
significantly reducing the number of generated instances compared to eager
instantiation strategies. We have used two SMT solvers to implement this
algorithm and conducted an extensive experimental evaluation on benchmarks
derived from verification conditions for heap-manipulating programs. We believe
that our results are of interest to both the users of SMT solvers as well as
their developers
- âŠ