5,537 research outputs found

    A new data reduction scheme to obtain the mode II fracture properties of Pinus Pinaster wood

    Get PDF
    In this work a numerical study of the End Notched Flexure (ENF) specimen was performed in order to obtain the mode II critical strain energy released rate (GIIc) of a Pinus pinaster wood in the RL crack propagation system. The analysis included interface finite elements and a progressive damage model based on indirect use of Fracture Mechanics. The difficulties in monitoring the crack length during an experimental ENF test and the inconvenience of performing separate tests in order to obtain the elastic properties are well known. To avoid these problems, a new data reduction scheme based on the equivalent crack concept was proposed and validated. This new data reduction scheme, the Compliance-Based Beam Method (CBBM), does not require crack measurements during ENF tests and additional tests to obtain elastic properties.FCT - POCTI/EME/45573/200

    Finite element analysis of the ECT test on mode III interlaminar fracture of carbon-epoxy composite laminates

    Get PDF
    In this work a parametric study of the Edge Crack Torsion (ECT) specimen was performed in order to maximize the mode III component (GIII) of the strain energy release rate for carbon-epoxy laminates. A three-dimensional finite element analysis of the ECT test was conducted considering a [90/0/(+45/-45)2/(-45/+45)2/0/90]S lay-up. The main objective was to define an adequate geometry to obtain an almost pure mode III at crack front. The geometrical parameters studied were specimen dimensions, distance between pins and size of the initial crack. The numerical results demonstrated that the ratio between the specimen length and the initial crack length had a significant effect on the strain energy release rate distributions. In almost all of the tested configurations, a mode II component occurred near the edges but it did not interfere significantly with the dominant mode III state.FCT - POCTI/EME/45573/200

    Bloch-like oscillations in a one-dimensional lattice with long-range correlated disorder

    Get PDF
    We study the dynamics of an electron subjected to a uniform electric field within a tight-binding model with long-range-correlated diagonal disorder. The random distribution of site energies is assumed to have a power spectrum S(k)∌1/kαS(k) \sim 1/k^{\alpha} with α>0\alpha > 0. Moura and Lyra [Phys. Rev. Lett. {\bf 81}, 3735 (1998)] predicted that this model supports a phase of delocalized states at the band center, separated from localized states by two mobility edges, provided α>2\alpha > 2. We find clear signatures of Bloch-like oscillations of an initial Gaussian wave packet between the two mobility edges and determine the bandwidth of extended states, in perfect agreement with the zero-field prediction.Comment: 4 pages, 5 figure

    On Deciding Local Theory Extensions via E-matching

    Full text link
    Satisfiability Modulo Theories (SMT) solvers incorporate decision procedures for theories of data types that commonly occur in software. This makes them important tools for automating verification problems. A limitation frequently encountered is that verification problems are often not fully expressible in the theories supported natively by the solvers. Many solvers allow the specification of application-specific theories as quantified axioms, but their handling is incomplete outside of narrow special cases. In this work, we show how SMT solvers can be used to obtain complete decision procedures for local theory extensions, an important class of theories that are decidable using finite instantiation of axioms. We present an algorithm that uses E-matching to generate instances incrementally during the search, significantly reducing the number of generated instances compared to eager instantiation strategies. We have used two SMT solvers to implement this algorithm and conducted an extensive experimental evaluation on benchmarks derived from verification conditions for heap-manipulating programs. We believe that our results are of interest to both the users of SMT solvers as well as their developers
    • 

    corecore