11 research outputs found

    Warmer Weather Linked to Tick Attack and Emergence of Severe Rickettsioses

    Get PDF
    The impact of climate on the vector behaviour of the worldwide dog tick Rhipicephalus sanguineus is a cause of concern. This tick is a vector for life-threatening organisms including Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, R. conorii, the agent of Mediterranean spotted fever, and the ubiquitous emerging pathogen R. massiliae. A focus of spotted fever was investigated in France in May 2007. Blood and tissue samples from two patients were tested. An entomological survey was organised with the study of climatic conditions. An experimental model was designed to test the affinity of Rh. sanguineus for biting humans in variable temperature conditions. Serological and/or molecular tools confirmed that one patient was infected by R. conorii, whereas the other was infected by R. massiliae. Dense populations of Rh. sanguineus were found. They were infected with new genotypes of clonal populations of either R. conorii (24/133; 18%) or R. massiliae (13/133; 10%). April 2007 was the warmest since 1950, with summer-like temperatures. We show herein that the human affinity of Rh. sanguineus was increased in warmer temperatures. In addition to the originality of theses cases (ophthalmic involvements, the second reported case of R. massiliae infection), we provide evidence that this cluster of cases was related to a warming-mediated increase in the aggressiveness of Rh. sanguineus, leading to increased human attacks. From a global perspective, we predict that as a result of globalisation and warming, more pathogens transmitted by the brown dog tick may emerge in the future

    Beta Interferon-Mediated Activation of Signal Transducer and Activator of Transcription Protein 1 Interferes with Rickettsia conorii Replication in Human Endothelial Cells ▿

    No full text
    Infection of the endothelial cell lining of blood vessels with Rickettsia conorii, the causative agent of Mediterranean spotted fever, results in endothelial activation. We investigated the effects of R. conorii infection on the status of the Janus kinase (JAK)-signal transducer and activator of transcription protein (STAT) signaling pathway in human microvascular endothelial cells (HMECs), the most relevant host cell type, in light of rickettsial tropism for microvascular endothelium in vivo. R. conorii infection induced phosphorylation of STAT1 on tyrosine 701 and serine 727 at 24, 48, and 72 h postinfection in HMECs. Employing transcription profile analysis and neutralizing antibodies, we further determined that beta interferon (IFN-β) production and secretion are critical for STAT1 activation. Secreted IFN-β further amplified its own expression via a positive-feedback mechanism, while expression of transcription factors interferon regulatory factor 7 (IRF7) and IRF9, implicated in the IFN-β–STAT1 feedback loop, was also induced. Metabolic activity of rickettsiae was essential for the IFN-β-mediated response(s) because tetracycline treatment inhibited R. conorii replication, IFN-β expression, and STAT1 phosphorylation. Inclusion of IFN-β-neutralizing antibody during infection resulted in significantly enhanced R. conorii replication, whereas addition of exogenous IFN-β had the opposite inhibitory effect. Finally, small interfering RNA-mediated knockdown further confirmed a protective role for STAT1 against intracellular R. conorii replication. In concert, these findings implicate an important role for IFN-β-mediated STAT1 activation in innate immune responses of vascular endothelium to R. conorii infection

    Die Literatur

    No full text

    Update on tick-borne rickettsioses around the world: A geographic approach

    No full text
    Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These zoonoses are among the oldest known vector-borne diseases. However, in the past 25 years, the scope and importance of the recognized tick-associated rickettsial pathogens have increased dramatically, making this complex of diseases an ideal paradigm for the understanding of emerging and reemerging infections. Several species of tick-borne rickettsiae that were considered nonpathogenic for decades are now associated with human infections, and novel Rickettsia species of undetermined pathogenicity continue to be detected in or isolated from ticks around the world. This remarkable expansion of information has been driven largely by the use of molecular techniques that have facilitated the identification of novel and previously recognized rickettsiae in ticks. New approaches, such as swabbing of eschars to obtain material to be tested by PCR, have emerged in recent years and have played a role in describing emerging tick-borne rickettsioses. Here, we present the current knowledge on tick-borne rickettsiae and rickettsioses using a geographic approach toward the epidemiology of these diseases

    Molecular Epidemiology of Rickettsial Diseases

    No full text
    This chapter summarizes the classical methods used to investigate rickettsioses initially discovered and characterized in the United States with an emphasis on their role in understanding their epidemiology. More recent molecular methodologies used to diagnose and characterize rickettsioses and rickettsial agents are then presented. New epidemiological insights into rickettsioses that have been obtained by using these molecular tools are then reviewed. Finally, the limitations of contemporary tools used in the molecular epidemiology of rickettsioses are examined and discussed in the context of new opportunities for improvement of these current approaches

    Update on Tick-Borne Rickettsioses around the World: a Geographic Approach

    No full text
    corecore