4,492 research outputs found

    On the Magnitude of Dark Energy Voids and Overdensities

    Full text link
    We investigate the clustering of dark energy within matter overdensities and voids. In particular, we derive an analytical expression for the dark energy density perturbations, which is valid both in the linear, quasi-linear and fully non-linear regime of structure formation. We also investigate the possibility of detecting such dark energy clustering through the ISW effect. In the case of uncoupled quintessence models, if the mass of the field is of order the Hubble scale today or smaller, dark energy fluctuations are always small compared to the matter density contrast. Even when the matter perturbations enter the non-linear regime, the dark energy perturbations remain linear. We find that virialised clusters and voids correspond to local overdensities in dark energy, with \delta_{\phi}/(1+w) \sim \Oo(10^{-5}) for voids, \delta_{\phi}/(1+w) \sim \Oo(10^{-4}) for super-voids and \delta_{\phi}/(1+w) \sim \Oo(10^{-5}) for a typical virialised cluster. If voids with radii of 100−300Mpc100-300 {\rm Mpc} exist within the visible Universe then δϕ\delta_{\phi} may be as large as 10−3(1+w)10^{-3}(1+w). Linear overdensities of matter and super-clusters generally correspond to local voids in dark energy; for a typical super-cluster: \delta_{\phi}/(1+w) \sim \Oo(-10^{-5}). The approach taken in this work could be straightforwardly extended to study the clustering of more general dark energy models.Comment: 20 pages, 14 figures. Accepted by the Astrophys.

    On virialization with dark energy

    Full text link
    We review the inclusion of dark energy into the formalism of spherical collapse, and the virialization of a two-component system, made of matter and dark energy. We compare two approaches in previous studies. The first assumes that only the matter component virializes, e.g. as in the case of a classic cosmological constant. The second approach allows the full system to virialize as a whole. We show that the two approaches give fundamentally different results for the final state of the system. This might be a signature discriminating between the classic cosmological constant which cannot virialize and a dynamical dark energy mimicking a cosmological constant. This signature is independent of the measured value of the equation of state. An additional issue which we address is energy non-conservation of the system, which originates from the homogeneity assumption for the dark energy. We propose a way to take this energy loss into account.Comment: 15 pages, 5 figures. Accepted for publication in JCA

    Produção de alho no Estado de Goiás.

    Get PDF
    Dentre as hortaliças cultivas em Goiás, ressalta-se a cultura do alho a qual apresenta grande importância econômica e social no Brasil e em diversos países do mundo, sendo muito utilizado como condimento e por suas propriedades medicinais.bitstream/item/104752/1/Artgo-Gerlado-Milanez.pd

    Unusual magnetic properties of the low-dimensional quantum magnet Na2V3O7

    Full text link
    We report the results of low-temperature measurements of the specific heat Cp(T), ac susceptibility chi(T) and 23Na nuclear magnetic resonance NMR of Na2V3O7. At liquid He temperatures Cp(T)/T exhibits broad field-dependent maxima, which shift to higher temperatures upon increasing the applied magnetic field H. Below 1.5 K the ac magnetic susceptibility chi(T) follows a Curie-Weiss law and exhibits a cusp at 0.086 mK which indicates a phase transition at very low temperatures. These results support the previous conjecture that Na2V3O7 is close to a quantum critical point (QCP) at mu_{0}H = 0 T. The entire data set, including results of measurements of the NMR spin-lattice relaxation 1/T1(T), reveals a complex magnetic behavior at low temperatures. We argue that it is due to a distribution of singlet-triplet energy gaps of dimerized V moments. The dimerization process evolves over a rather broad temperature range around and below 100 K. At the lowest temperatures the magnetic properties are dominated by the response of only a minor fraction of the V moments.Comment: 10.5 pages, 15 figures. Submitted to Phys. Rev.

    The role of bacteria in pine wilt disease: insights from microbiome analysis.

    Get PDF
    Pine Wilt Disease (PWD) has a significant impact on Eurasia pine forests. The microbiome of the nematode (the primary cause of the disease), its insect vector, and the host tree may be relevant for the disease mechanism. The aim of this study was to characterize these microbiomes, from three PWD-affected areas in Portugal, using Denaturing Gradient Gel Electrophoresis, 16S rRNA gene pyrosequencing, and a functional inference-based approach (PICRUSt). The bacterial community structure of the nematode was significantly different from the infected trees but closely related to the insect vector, supporting the hypothesis that the nematode microbiome might be in part inherited from the insect. Sampling location influenced mostly the tree microbiome (P < 0.05). Genes related both with plant growth promotion and phytopathogenicity were predicted for the tree microbiome. Xenobiotic degradation functions were predicted in the nematode and insect microbiomes. Phytotoxin biosynthesis was also predicted for the nematode microbiome, supporting the theory of a direct contribution of the microbiome to tree-wilting. This is the first study that simultaneously characterized the nematode, tree and insect-vector microbiomes from the same affected areas, and overall the results support the hypothesis that the PWD microbiome plays an important role in the disease's development

    Infrared Behavior of the Pressure in gϕ3g \phi^3 Theory Reexamined

    Full text link
    We reinvestigate the infrared behavior of the pressure in the gϕ3g \phi^3 scalar theory in six dimensions. This problem was first studied by Almeida and Frenkel and more recently by Carrington et al., that certified their results under certain approximations. We employ an alternative technique, instead of the approximation methods necessary to truncate the Schwinger-Dyson equations, often considered to calculate the pressure nonperturbatively. A daisy-type sum, implemented through the modified self-consistent resummation (MSCR), is enough to take care of the infrared divergences ensuring the finiteness of the pressure.Comment: Revtex4, 7 pages, 1 figur
    • …
    corecore