594 research outputs found

    Nuclear corrections in neutrino-nucleus DIS and their compatibility with global NPDF analyses

    Full text link
    We perform a global chi^2-analysis of nuclear parton distribution functions using data from charged current neutrino-nucleus deep-inelastic scattering (DIS), charged-lepton-nucleus DIS, and the Drell-Yan (DY) process. We show that the nuclear corrections in nu-A DIS are not compatible with the predictions derived from l^+A DIS and DY data. We quantify this result using a hypothesis-testing criterion based on the chi^2 distribution which we apply to the total chi^2 as well as to the chi^2 of the individual data sets. We find that it is not possible to accommodate the data from nu-A and l^+A DIS by an acceptable combined fit. Our result has strong implications for the extraction of both nuclear and proton parton distribution functions using combined neutrino and charged-lepton data sets.Comment: 5 page

    CTEQ Parton Distributions and Flavor Dependence of Sea Quarks

    Full text link
    This paper describes salient features of new sets of parton distributions obtained by the CTEQ Collaboration based on a comprehensive QCD global analysis of all available data. The accuracy of the new data on deep inelastic scattering structure functions obtained by the very high statistics NMC and CCFR experiments provides unprecedented sensitivity to the flavor dependence of the sea-quark distributions. In addition to much better determination of the small x dependence of all parton distributions, we found: (i) the strange quark distribution is much softer than the non-strange sea quarks and rises above the latter at small-x; and (ii) the difference dˉ−uˉ\bar d-\bar u changes sign as a function of x. A few alternative sets of viable distributions with conventional assumptions are also discussed.Comment: 13 pages with figures, MSUHEP-92-27, Fermilab-Pub-92/371, FSU-HEP-92-1225, ISU-NP-92-1

    nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework

    Full text link
    We present the new nCTEQ15 set of nuclear parton distribution functions with uncertainties. This fit extends the CTEQ proton PDFs to include the nuclear dependence using data on nuclei all the way up to 208^Pb. The uncertainties are determined using the Hessian method with an optimal rescaling of the eigenvectors to accurately represent the uncertainties for the chosen tolerance criteria. In addition to the Deep Inelastic Scattering (DIS) and Drell-Yan (DY) processes, we also include inclusive pion production data from RHIC to help constrain the nuclear gluon PDF. Furthermore, we investigate the correlation of the data sets with specific nPDF flavor components, and asses the impact of individual experiments. We also provide comparisons of the nCTEQ15 set with recent fits from other groups.Comment: 35 page

    Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit

    Get PDF
    We present the first experimental realization of a widely frequency tunable, non-degenerate three-wave mixing device for quantum signals at GHz frequency. It is based on a new superconducting building-block consisting of a ring of four Josephson junctions shunted by a cross of four linear inductances. The phase configuration of the ring remains unique over a wide range of magnetic fluxes threading the loop. It is thus possible to vary the inductance of the ring with flux while retaining a strong, dissipation-free, and noiseless non-linearity. The device has been operated in amplifier mode and its noise performance has been evaluated by using the noise spectrum emitted by a voltage biased tunnel junction at finite frequency as a test signal. The unprecedented accuracy with which the crossover between zero-point-fluctuations and shot noise has been measured provides an upper-bound for the noise and dissipation intrinsic to the device.Comment: Accepted for Physical Review Letters. Supplementary material can be found in the source packag

    Anomalous prompt photon production in hadronic collisions at low-xTx_T

    Full text link
    We investigate the discrepancy that exists at low-xT=2pT/sx_T=2p_T/\sqrt{s} between the next--to--leading order QCD calculations of prompt photon production and the measured cross section. The central values of the measured cross section are of order 100\% larger than QCD predictions in this region. It has been suggested that the bremsstrahlung contribution may account for this discrepancy. The quark fragmentation function Dγ/q(z)D_{\gamma/q}(z) has not been measured and an exactly known asymptotic form is normally used in calculations. We examine the effect of much larger fragmentation functions on the QCD predictions. After illustrating the effect of the large fragmentation functions in some detail for recent CDF data at s\sqrt{s}=1.8~TeV, we perform a χ2\chi^2 fit to 8 prompt photon data sets ranging in CMS energy from 24~GeV to 1.8~TeV. While a large fragmentation function normalization may prove to play an important role in resolving the discrepancy, the present theoretical and experimental uncertainties prevent any definite normalization value from being determined.Comment: 14 pages, LBL-33122 and UCB-PTH-92/38. 13 figures available by email, specify postscript or topdrawe

    Large-x Parton Distributions

    Get PDF
    Reliable knowledge of parton distributions at large x is crucial for many searches for new physics signals in the next generation of collider experiments. Although these are generally well determined in the small and medium x range, it has been shown that their uncertainty grows rapidly for x>0.1. We examine the status of the gluon and quark distributions in light of new questions that have been raised in the past two years about "large-x" parton distributions, as well as recent measurements which have improved the parton uncertainties. Finally, we provide a status report of the data used in the global analysis, and note some of the open issues where future experiments, including those planned for Jefferson Labs, might contribute.Comment: LaTeX, 9 pages, 7 figures. Invited talk presented at the ``Workshop on Nucleon Structure in the High x-Bjorken Region (HiX2000),'' Temple University, Philadelphia, Pennsylvania, March 30-April 1, 200

    Compatibility of global NPDF analyses of neutrino DIS and charged-lepton DIS data

    Full text link
    The neutrino deep inelastic scattering (DIS) data is very interesting for global analyses of proton and nuclear parton distribution functions (PDFs) since they provide crucial information on the strange quark distribution in the proton and allow for a better flavor decompositon of the PDFs. In order to use neutrino DIS data in a global analysis of proton PDFs nuclear effects need to be understood. We study these effects with the help of nuclear PDFs extracted from global analyses of charged-lepton DIS, Drell-Yan and neutrino DIS data at next-to-leading order in QCD.Comment: Contribution to the XXIst International Europhysics Conference on High Energy Physics, 21-27 July 2011, Grenoble, Franc
    • …
    corecore