3,795 research outputs found

    Vortex-lattice pinning in two-component Bose-Einstein condensates

    Full text link
    We investigate the vortex-lattice structure for single- and two-component Bose-Einstein condensates in the presence of an optical lattice, which acts as a pinning potential for the vortices. The problem is considered in the mean-field quantum-Hall regime, which is reached when the rotation frequency Ω\Omega of the condensate in a radially symmetric trap approaches the (radial) trapping frequency ω\omega and the interactions between the atoms are weak. We determine the vortex-lattice phase diagram as a function of optical-lattice strength and geometry. In the limit of strong pinning the vortices are always pinned at the maxima of the optical-lattice potential, similar to the slow-rotation case. At intermediate pinning strength, however, due to the competition between interactions and pinning energy, a structure arises for the two-component case where the vortices are pinned on lines of minimal potential

    Guardiões e guardiãs da agrobiodiversidade das regiões do Cariri, Curamataú e Seridó paraibano.

    Get PDF
    ref. 14455. Edição dos Resumos do VIII Congresso Brasileiro de Agroecologia, Porto Alegre, nov. 2013
    corecore