4,290 research outputs found

    Exact solutions of Brans-Dicke cosmology with decaying vacuum density

    Get PDF
    We investigate cosmological solutions of Brans-Dicke theory with both the vacuum energy density and the gravitational constant decaying linearly with the Hubble parameter. A particular class of them, with constant deceleration factor, sheds light on the cosmological constant problems, leading to a presently small vacuum term, and to a constant ratio between the vacuum and matter energy densities. By fixing the only free parameter of these solutions, we obtain cosmological parameters in accordance with observations of both the relative matter density and the universe age. In addition, we have three other solutions, with Brans-Dicke parameter w = -1 and negative cosmological term, two of them with a future singularity of big-rip type. Although interesting from the theoretical point of view, two of them are not in agreement with the observed universe. The third one leads, in the limit of large times, to a constant relative matter density, being also a possible solution to the cosmic coincidence problem.Comment: Minor changes, references added. Version accepted for publication in Classical and Quantum Gravit

    Exact solutions of Brans-Dicke cosmology and the cosmic coincidence problem

    Full text link
    We present some cosmological solutions of Brans-Dicke theory, characterized by a decaying vacuum energy density and by a constant relative matter density. With these features, they shed light on the cosmological constant problems, leading to a presently small vacuum term, and to a constant ratio between the vacuum and matter energy densities. By fixing the only free parameter of our solutions, we obtain cosmological parameters in accordance with observations of the relative matter density, the universe age and redshift-distance relations.Comment: To appear in Brazilian Journal of Physics (proceedings of the conference 100 Years of Relativity, Sao Paulo, August 2005

    Probing the Radio Loud/Quiet AGN dichotomy with quasar clustering

    Get PDF
    We investigate the clustering properties of 45441 radio-quiet quasars (RQQs) and 3493 radio-loud quasars (RLQs) drawn from a joint use of the Sloan Digital Sky Survey (SDSS) and Faint Images of the Radio Sky at 20 cm (FIRST) surveys in the range 0.3<z<2.30.3<z<2.3. This large spectroscopic quasar sample allow us to investigate the clustering signal dependence on radio-loudness and black hole (BH) virial mass. We find that RLQs are clustered more strongly than RQQs in all the redshift bins considered. We find a real-space correlation length of r0=6.59−0.24+0.33 h−1 Mpcr_{0}=6.59_{-0.24}^{+0.33}\,h^{-1}\,\textrm{Mpc} and r0=10.95−1.58+1.22 h−1 Mpcr_{0}=10.95_{-1.58}^{+1.22}\,h^{-1}\,\textrm{Mpc} {\normalsize{}for} RQQs and RLQs, respectively, for the full redshift range. This implies that RLQs are found in more massive host haloes than RQQs in our samples, with mean host halo masses of ∼4.9×1013 h−1 M⊙\sim4.9\times10^{13}\,h^{-1}\,M_{\odot} and ∼1.9×1012 h−1 M⊙\sim1.9\times10^{12}\,h^{-1}\,M_{\odot}, respectively. Comparison with clustering studies of different radio source samples indicates that this mass scale of ≳1×1013 h−1 M⊙\gtrsim1\times10^{13}\,h^{-1}\,M_{\odot} is characteristic for the bright radio-population, which corresponds to the typical mass of galaxy groups and galaxy clusters. The similarity we find in correlation lengths and host halo masses for RLQs, radio galaxies and flat-spectrum radio quasars agrees with orientation-driven unification models. Additionally, the clustering signal shows a dependence on black hole (BH) mass, with the quasars powered by the most massive BHs clustering more strongly than quasars having less massive BHs. We suggest that the current virial BH mass estimates may be a valid BH proxies for studying quasar clustering. We compare our results to a previous theoretical model that assumes that quasar activityComment: 15 pages, 13 figures, A&A in pres

    Thrifty swimming with shear-thinning

    Get PDF
    Microscale propulsion is integral to numerous biomedical systems, for example biofilm formation and human reproduction, where the surrounding fluids comprise suspensions of polymers. These polymers endow the fluid with non-Newtonian rheological properties, such as shear-thinning and viscoelasticity. Thus, the complex dynamics of non-Newtonian fluids presents numerous modelling challenges, strongly motivating experimental study. Here, we demonstrate that failing to account for "out-of-plane" effects when analysing experimental data of undulatory swimming through a shear-thinning fluid results in a significant overestimate of fluid viscosity around the model swimmer C. elegans. This miscalculation of viscosity corresponds with an overestimate of the power the swimmer expends, a key biophysical quantity important for understanding the internal mechanics of the swimmer. As experimental flow tracking techniques improve, accurate experimental estimates of power consumption using this technique will arise in similar undulatory systems, such as the planar beating of human sperm through cervical mucus, will be required to probe the interaction between internal power generation, fluid rheology, and the resulting waveform

    A nonlinear vehicle-structure interaction methodology with wheel-rail detachment and reattachment

    Get PDF
    . A vehicle-structure interaction methodology with a nonlinear contact formulation based on contact and target elements has been developed. To solve the dynamic equations of motion, an incremental formulation has been used due to the nonlinear nature of the contact mechanics, while a procedure based on the Lagrange multiplier method imposes the contact constraint equations when contact occurs. The system of nonlinear equations is solved by an efficient block factorization solver that reorders the system matrix and isolates the nonlinear terms that belong to the contact elements or to other nonlinear elements that may be incorporated in the model. Such procedure avoids multiple unnecessary factorizations of the linear terms during each Newton iteration, making the formulation efficient and computationally attractive. A numerical example has been carried out to validate the accuracy and efficiency of the present methodology. The obtained results have shown a good agreement with the results obtained with the commercial finite element software ANSY

    Star formation in the warped outer pseudoring of the spiral galaxy NGC 3642

    Full text link
    NGC 3642 was classified as a spiral galaxy with three rings and no bar. We have performed an HI and optical study of this nearly face-on galaxy. We find that the nuclear ring might in fact be part of an inner one-armed spiral, that could be driving nuclear accretion and feeding the central activity in the inner kpc. The inner ring is faint, and the outer ring is a rather ill-defined pseudoring. Furthermore, the size ratio of the rings is such that they cannot be due to a single pattern speed linking them together. The outer pseudoring is peculiar, since it lies in the faint outer parts of the disk, where star formation is still going on at 1.4 times the optical radius. Higher HI column densities are associated with these regions and the atomic gas layer is warped. These perturbations affect only the outer disk, since the kinematics within the main body conforms well to an ordinary differentially rotating disk. We propose here that both nuclear activity and star formation in the warped outer parts might be linked to the fact that NGC 3642 is located in a rich environment, where its close neighbors show clear signs of merging. Our suggestion is that NGC 3642 has captured recently a low-mass, gas-rich dwarf, and star formation was triggered in this infalling external gas that produced also a pronounced warp in the gaseous disk.Comment: Accepted for publication in A&A. Full resolution version available at http://www.iaa.es/~lourdes/3642/H3551.tar.g

    The place premium : wage differences for identical workers across the US border

    Get PDF
    This paper compares the wages of workers inside the United States to the wages of observably identical workers outside the United States-controlling for country of birth, country of education, years of education, work experience, sex, and rural-urban residence. This is made possible by new and uniquely rich microdata on the wages of over two million individual formal-sector wage-earners in 43 countries. The paper then uses five independent methods to correct these estimates for unobserved differences and introduces a selection model to estimate how migrants'wage gains depend on their position in the distribution of unobserved wage determinants. Following all adjustments for selectivity and compensating differentials, the authors estimate that the wages of a Bolivian worker of equal intrinsic productivity, willing to move, would be higher by a factor of 2.7 solely by working in the United States. While this is the median, this ratio is as high as 8.4 (for Nigeria). The paper documents that (1) for many countries, the wage gaps caused by barriers to movement across international borders are among the largest known forms of wage discrimination; (2) these gaps represent one of the largest remaining price distortions in any global market; and (3) these gaps imply that simply allowing labor mobility can reduce a given household's poverty to a much greater degree than most known in situ antipoverty interventions.,Population Policies,Income,Economic Theory&Research,Labor Markets
    • …
    corecore