7,434 research outputs found

    Tuning the Mott transition in a Bose-Einstein condensate by multi-photon absorption

    Get PDF
    We study the time-dependent dynamics of a Bose-Einstein condensate trapped in an optical lattice. Modeling the system as a Bose-Hubbard model, we show how applying a periodic driving field can induce coherent destruction of tunneling. In the low-frequency regime, we obtain the novel result that the destruction of tunneling displays extremely sharp peaks when the driving frequency is resonant with the depth of the trapping potential (``multi-photon resonances''), which allows the quantum phase transition between the Mott insulator and the superfluid state to be controlled with high precision. We further show how the waveform of the field can be chosen to maximize this effect.Comment: Minor changes, this version to be published in Phys. Rev. Let

    2δ2\delta-Kicked Quantum Rotors: Localization and `Critical' Statistics

    Get PDF
    The quantum dynamics of atoms subjected to pairs of closely-spaced δ\delta-kicks from optical potentials are shown to be quite different from the well-known paradigm of quantum chaos, the singly-δ\delta-kicked system. We find the unitary matrix has a new oscillating band structure corresponding to a cellular structure of phase-space and observe a spectral signature of a localization-delocalization transition from one cell to several. We find that the eigenstates have localization lengths which scale with a fractional power L.75L \sim \hbar^{-.75} and obtain a regime of near-linear spectral variances which approximate the `critical statistics' relation Σ2(L)χL1/2(1ν)L\Sigma_2(L) \simeq \chi L \approx {1/2}(1-\nu) L, where ν0.75\nu \approx 0.75 is related to the fractal classical phase-space structure. The origin of the ν0.75\nu \approx 0.75 exponent is analyzed.Comment: 4 pages, 3 fig

    Instability and new phases of higher-dimensional rotating black holes

    Get PDF
    It has been conjectured that higher-dimensional rotating black holes become unstable at a sufficiently large value of the rotation, and that new black holes with pinched horizons appear at the threshold of the instability. We search numerically, and find, the stationary axisymmetric perturbations of Myers-Perry black holes with a single spin that mark the onset of the instability and the appearance of the new black hole phases. We also find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes.Comment: 5 pages, 5 figures. The instability of the black hole is argued to appear at the second zero mode. The first zero mode is not associated to a new branch of black hole solution

    Dynamical instability in kicked Bose-Einstein condensates: Bogoliubov resonances

    Full text link
    Bose-Einstein condensates subject to short pulses (`kicks') from standing waves of light represent a nonlinear analogue of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of dynamical instability (ie exponential proliferation of non-condensate particles) suggested that the transition to instability might be associated with a transition to chaos. Here we conclude instead that instability is due to resonant driving of Bogoliubov modes. We investigate the excitation of Bogoliubov modes for both the quantum kicked rotor (QKR) and a variant, the double kicked rotor (QKR-2). We present an analytical model, valid in the limit of weak impulses which correctly gives the scaling properties of the resonances and yields good agreement with mean-field numerics.Comment: 8 page

    Chaotic quantum ratchets and filters with cold atoms in optical lattices: properties of Floquet states

    Get PDF
    Recently, cesium atoms in optical lattices subjected to cycles of unequally-spaced pulses have been found to show interesting behavior: they represent the first experimental demonstration of a Hamiltonian ratchet mechanism, and they show strong variability of the Dynamical Localization lengths as a function of initial momentum. The behavior differs qualitatively from corresponding atomic systems pulsed with equal periods, which are a textbook implementation of a well-studied quantum chaos paradigm, the quantum delta-kicked particle (delta-QKP). We investigate here the properties of the corresponding eigenstates (Floquet states) in the parameter regime of the new experiments and compare them with those of the eigenstates of the delta-QKP at similar kicking strengths. We show that, with the properties of the Floquet states, we can shed light on the form of the observed ratchet current as well as variations in the Dynamical Localization length.Comment: 9 pages, 9 figure

    Theory of 2δ\delta-kicked Quantum Rotors

    Get PDF
    We examine the quantum dynamics of cold atoms subjected to {\em pairs} of closely spaced δ\delta-kicks from standing waves of light, and find behaviour quite unlike the well-studied quantum kicked rotor (QKR). Recent experiments [Jones et al, {\em Phys. Rev. Lett. {\bf 93}, 223002 (2004)}] identified a regime of chaotic, anomalous classical diffusion. We show that the corresponding quantum phase-space has a cellular structure, arising from a unitary matrix with oscillating band-width. The corresponding eigenstates are exponentially localized, but scale with a fractional power, L0.75L \sim \hbar^{-0.75}, in contrast to the QKR for which L1L \sim \hbar^{-1}. The effect of inter-cell (and intra-cell) transport is investigated by studying the spectral fluctuations with both periodic as well as `open' boundary conditions.Comment: 12 pages with 14 figure

    Semiclassical description of resonant tunneling

    Full text link
    We derive a semiclassical formula for the tunneling current of electrons trapped in a potential well which can tunnel into and across a wide quantum well. The calculations idealize an experimental situation where a strong magnetic field tilted with respect to an electric field is used. The resulting semiclassical expression is written as the sum over special periodic orbits which hit both walls of the quantum well and are perpendicular to the first wall.Comment: LaTeX, 8 page
    corecore