1,219 research outputs found
A hybrid version of the tilted axis cranking model and its application to ^{128}Ba
A hybrid version the deformed nuclear potential is suggested, which combines
a spherical Woods Saxon potential with a deformed Nilsson potential. It removes
the problems of the conventional Nilsson potential in the mass 130 region.
Based on the hybrid potential, tilted axis cranking calculations are carried
out for the magnetic dipole band in ^{128}Ba.Comment: 10 pages 6 figure
Ionic structure and photoabsorption in medium sized sodium clusters
We present ground-state configurations and photoabsorption spectra of Na-7+,
Na-27+ and Na-41+. Both the ionic structure and the photoabsorption spectra of
medium-size sodium clusters beyond Na-20 have been calculated self-consistently
with a nonspherical treatment of the valence electrons in density functional
theory. We use a local pseudopotential that has been adjusted to experimental
bulk properties and the atomic 3s level of sodium. Our studies have shown that
both the ionic structure of the ground state and the positions of the plasmon
resonances depend sensitively on the pseudopotential used in the calculation,
which stresses the importance of its consistent use in both steps.Comment: 4 pages, 3 figures. Accepted for publication in PRB, tentatively July
15th, 1998 some typos corrected, brought to nicer forma
Stability Considerations for Final Focus Systems of Future Linear Colliders
The final focus systems for the future linear colliders need to focus beams to nm-range spot sizes at the collision point. The design spot size varies from several nm for 500 GeV to the one nm range for 3 TeV. In order to keep the beams in collision and to maintain the luminosity stringent stability optimization must be applied. We discuss different sources of beam perturbations and estimate the expected beamline stability based on previous experimental observations. Possible measures for beam stabilization are discussed and plans of further collaborative efforts are outlined
Ionic and electronic structure of sodium clusters up to N=59
We determined the ionic and electronic structure of sodium clusters with even
electron numbers and 2 to 59 atoms in axially averaged and three-dimensional
density functional calculations. A local, phenomenological pseudopotential that
reproduces important bulk and atomic properties and facilitates structure
calculations has been developed. Photoabsorption spectra have been calculated
for , , and to
. The consistent inclusion of ionic structure considerably
improves agreement with experiment. An icosahedral growth pattern is observed
for to . This finding is supported by
photoabsorption data.Comment: To appear in Phys. Rev. B 62. Version with figures in better quality
can be requested from the author
Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization
Cationic titanium(IV) complexes with ansa-(η5-cyclopentadienyl,η6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the η6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature η1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.
Twist Mode in Spherical Alkali Metal Clusters
A remarkable orbital quadrupole magnetic resonance, so-called twist mode, is
predicted in alkali metal clusters where it is represented by
low-energy excitations of valence electrons with strong M2 transitions to the
ground state. We treat the twist by both macroscopic and microscopic ways. In
the latter case, the shell structure of clusters is fully exploited, which is
crucial for the considered size region (). The
energy-weighted sum rule is derived for the pseudo-Hamiltonian. In medium and
heavy spherical clusters the twist dominates over its spin-dipole counterpart
and becomes the most strong multipole magnetic mode.Comment: 8 pages, 4 figures, to be published in Phys. Rev. Lett., v.85, n.15,
200
Applications of Small Satellites for Defense Space Communication Systems and Technology Development: Pegasus Flight-2 and the Launch of Microsat
DARPA\u27s seven Microsats were placed into orbit on the second flight of the Pegasus. The Microsat program objective is to assess the tactical utility of small, low-cost communications satellites. This paper describes the changes made to the Pegasus since its first flight, provides an overview of the Microsat demonstration program, and outlines the preliminary results of the Pegasus launch. Finally, the near-term Army and Navy demonstration plans for Microsat are discussed
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
- …
