119 research outputs found

    Photosensitizers Imprinting Intracellular Signaling Pathways in Dermato-Oncology Therapy

    Get PDF
    This chapter describes the main deregulated intracellular pathways at both genetic and proteomic levels that are found in three main skin cancers: basal cell carcinoma, squamous cell carcinoma and melanoma. In basal cell carcinoma, the main intracellular signaling pathways is the Sonic Hedgehog pathway, while in squamous cell carcinoma, it is the p53 pathway. However, in both nonmelanoma skin cancers, these major pathways trigger cross-activation with other important ones. In melanoma, mitogen-activated protein kinase pathway and PI3K/Akt pathways are deeply deregulated, and moreover due to the disease complexity, BRAF, RAS (N/H/K), NF1 and Triple-WT melanoma subtypes need additional molecular stratification. The stage in which photodynamic therapies’ clinical application is in the treatment of these diseases is another subject tackled by the chapter. Thus, if basal cell carcinoma and squamous cell carcinoma possess in their therapeutical armamentarium photodynamic therapies approach, melanoma, with its particularities, still needs thorough molecular investigations to adapt this particular therapy. Based on the accumulated knowledge on pathological intracellular pathways, the chapter describes the molecular details that reside in applying photodynamic therapy. In vivo and in vitro models of cutaneous malignancy and photodynamic therapies’ molecular events are further detailed

    Proteoglycans and Immunobiology of Cancer—Therapeutic Implications

    Get PDF
    Disparity during the resolution of inflammation is closely related with the initiation and progression of the tumorigenesis. The transformed cells, through continuously evolving interactions, participate in various exchanges with the surrounding microenvironment consisting of extracellular matrix (ECM) components, cytokines embedded in the ECM, as well as the stromal cells. Proteoglycans (PGs), complex molecules consisting of a protein core into which one or more glycosaminoglycan (GAG) chains are covalently tethered, are important regulators of the cell/matrix interface and, consecutively, biological functions. The discrete expression of PGs and their interacting partners has been distinguished as specific for disease development in diverse cancer types. In this mini-review, we will critically discuss the roles of PGs in the complex processes of cancer-associated modulation of the immune response and analyze their mechanisms of action. A deeper understanding of mechanisms which are capable of regulating the immune response could be harnessed to treat malignant disease

    Inflammation and Metabolism in Cancer Cell—Mitochondria Key Player

    Get PDF
    Cancer metabolism is an essential aspect of tumorigenesis, as cancer cells have increased energy requirements in comparison to normal cells. Thus, an enhanced metabolism is needed in order to accommodate tumor cells' accelerated biological functions, including increased proliferation, vigorous migration during metastasis, and adaptation to different tissues from the primary invasion site. In this context, the assessment of tumor cell metabolic pathways generates crucial data pertaining to the mechanisms through which tumor cells survive and grow in a milieu of host defense mechanisms. Indeed, various studies have demonstrated that the metabolic signature of tumors is heterogeneous. Furthermore, these metabolic changes induce the exacerbated production of several molecules, which result in alterations that aid an inflammatory milieu. The therapeutic armentarium for oncology should thus include metabolic and inflammation regulators. Our expanding knowledge of the metabolic behavior of tumor cells, whether from solid tumors or hematologic malignancies, may provide the basis for the development of tailor-made cancer therapies

    Schwann Cell Plasticity in Peripheral Nerve Regeneration after Injury

    Get PDF
    In the normal peripheral nervous system, Schwann cells (SCs) are present in two different states of differentiation: myelinating SCs that surround large-caliber axons, forming myelin sheath, and non-myelinating SCs that surround more small-caliber axons forming Remak bundles. Under pathological conditions (injury or inflammation), SCs, with a remarkable plasticity, undergo phenotypic transformations, downregulating the production of myelin proteins mRNAs, upregulating neurotrophic factors and cytokines, thus promoting the axonal regeneration. Dedifferentiated SCs activate the protein degradation, participating in the demyelination process and clearance of myelin debris; attract macrophages helping wound healing; proliferate to replace lost cells; guide axonal growth; and protect against secondary axonal damage. Thus, SC functions have a critical contribution to regeneration processes that occur in peripheral nerve after injury
    • …
    corecore