165 research outputs found

    Vertical farming: a summary of approaches to growing skywards

    Get PDF
    Pressure on agricultural land from a rising global population is necessitating the maximisation of food production per unit area of cultivation. Attention is increasingly turning to Vertical Farming (VF) approaches in an attempt to provide a greater crop yield per square meter of land. However, this term has been used to cover a broad range of approaches, from personal- or community-scale vegetable and herb growing to vast skyscrapers for commercial production of a wide range of crops. This article summarises the main categories of VF in order to help clarify this emerging but sometimes confusing area of agriculture and discusses how scientific investigation of the potential of VF is currently lacking and will be required to help determine its feasibility as a method to assist meaningfully in global food production

    Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress

    Get PDF
    BACKGROUND Brassica oleracea includes a number of important crop types such as cabbage, cauliflower, broccoli and kale. Current climate conditions and weather patterns are causing significant losses in these crops, meaning that new cultivars with improved tolerance of one or more abiotic stress types must be sought. In this study, genetically fixed B. oleracea lines belonging to a Diversity Fixed Foundation Set (DFFS) were assayed for their response to seedling stage-imposed drought, flood, salinity, heat and cold stress. RESULTS Significant (P ≤ 0.05) variation in stress tolerance response was found for each stress, for each of four measured variables (relative fresh weight, relative dry weight, relative leaf number and relative plant height). Lines tolerant to multiple stresses were found to belong to several different crop types. There was no overall correlation between the responses to the different stresses. CONCLUSION Abiotic stress tolerance was identified in multiple B. oleracea crop types, with some lines exhibiting resistance to multiple stresses. For each stress, no one crop type appeared significantly more or less tolerant than others. The results are promising for the development of more environmentally robust lines of different B. oleracea crops by identifying tolerant material and highlighting the relationship between responses to different stresses. © 2017 Society of Chemical Industr

    Deficit irrigation reduces postharvest rib pinking in wholehead Iceberg lettuce, but at the expense of head fresh weight

    Get PDF
    BACKGROUND Postharvest pinking is a serious issue affecting lettuce quality. Previous studies suggested the possibility of using deficit irrigation to control discolouration; however, this approach may also affect yield. This study investigated the effect of varying irrigation deficits on iceberg lettuce (Lactuca sativa L.) to determine the relationship between irrigation deficit, pinking and fresh weight. RESULTS The deficit imposed and head fresh weight obtained depended on both the duration and timing of withholding irrigation. Withholding irrigation for a period of 2 or 3 weeks in the middle or end of the growth period significantly reduced rib pinking compared to well-watered controls. Withholding irrigation for 2 weeks at the start of the growth period or 1 week at the end did not significantly reduce pinking. Withholding irrigation also reduced head fresh weight such that minimising pinking would be predicted to incur a loss of 40% relative to well-watered controls. However, smaller benefits to pinking reduction were achieved with less effect on head fresh weight. CONCLUSION Deficit irrigation could be used to provide smaller but higher quality heads which are less likely to be rejected. The balance of these factors will determine the degree of adoption of this approach to growers

    Multi-technique characterisation of MOVPE-grown GaAs on Si

    Get PDF
    The heterogeneous integration of III-V materials on a Si CMOS platform offers tremendous prospects for future high speed and low power logic applications. That said this integration generates immense scientific and technological challenges. In this work multi-technique characterisation is used to investigate properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Si substrates - (100) with 4⁰ offset towards - under various growth conditions. This being a crucial first step towards the production of III-V template layers with a relatively lower density of defects for selective epitaxial overgrowth of device quality material. The optical and structural properties of heteroepitaxial GaAs are first investigated by micro-Raman spectroscopy and photoluminescence and reflectance measurements. High-resolution X-ray diffraction (HR-XRD) is used to investigate structural properties. Advanced XRD techniques, including double-axis diffraction and X-ray crystallographic mapping are used to evaluate degrees of relaxation and distribution of the grain orientations in the epilayers, respectively. Results obtained from the different methodologies are compared in an attempt to understand growth kinetics of the materials system. The GaAs overlayer grown with annealing at 735⁰C following As predeposition at 500⁰C shows the best crystallinity. Close inspection confirms the growth of epitaxial GaAs preferentially oriented along (100) embedded in a highly-textured polycrystalline structure

    Postharvest temperature and water status influence postharvest splitting susceptibility in summer radish ( Raphanus sativus L.)

    Get PDF
    BACKGROUND Splitting is a problem that seriously affects appearance and marketability in a number of fruit and vegetables. In summer radish (Raphanus sativus L.), splitting can occur during growth, harvesting and postharvest. We investigated the factors affecting splitting susceptibility in summer radish cv. Celesta during postharvest handling. RESULTS Splitting susceptibility was negatively related to temperature, with higher temperature reducing splitting due to dropping impact. Radish diameter was positively associated with compression failure force, suggesting that larger radishes are more resistant to compressive splitting. An increase in radish hypocotyl water content (WC) was associated with an increase in splitting susceptibility due to impact and decrease in failure force for both compression and puncture forces. Increased hypocotyl WC may increase splitting susceptibility by increasing the water potential of the radish tissue. In agreement, we found that increased hypocotyl WC was associated with higher internal water potential in radish tissue. CONCLUSIONS We therefore recommend that the hypocotyl WC of summer radish crops be managed during the harvest and postharvest phases, and that crops are processed at higher, ambient, temperature in order to reduce splitting, before storing at low temperature and high humidity to maintain quality and shelf life

    Fate of Escherichia coli O145 present naturally in bovine slurry applied to vegetables before harvest, after washing and simulated wholesale and retail distribution

    Get PDF
    Aims: To determine the fate of E. coli on vegetables that were processed through commercial wash treatments and stored under simulated retail conditions at 4oC or wholesale at fluctuating ambient temperatures (0-25oC, dependent on season). Methods and Results: Bovine slurry that was naturally contaminated with Escherichia coli O145 was applied without dilution or diluted 1/10 using borehole water to growing potatoes, leeks or carrots. Manure was applied one week prior to harvest to simulate a near-harvest contamination event by manure deposition or an application of contaminated water to simulate a flooding event or irrigation from a contaminated water source. At harvest, crops were contaminated at up to two log cfu/g. Washing transferred E. coli into the water of a flotation tank used for potato washing and did not completely remove all traces of contamination from the crop. Manure contaminated potatoes were observed to contain 0.72 cfu E. coli O145/g after processing and retail storage. Manure-contaminated leeks harboured 0.73 – 1.55 cfu E. coli O145/g after washing and storage. There was no cross contamination when leeks were spray-washed. Washing in an abrasive drum resulted in less than perfect decontamination for manure-contaminated carrots. There were five post-distribution isolations from carrots irrigated with contaminated water 24h prior to harvest. Conclusions: Standard commercial washing and distribution conditions may be insufficient to reliably control human pathogenic E. coli on fresh produce. Significance and Impact: Previous speculation that the cause of a UK foodborne disease outbreak was soil from imperfectly cleaned vegetables is plausible

    Risk assessment or assessment of risk? Developing an evidence-based approach for primary producers of leafy vegetables to assess and manage microbial risks

    Get PDF
    Over the last 10 years, some high-profile foodborne illness outbreaks have been linked to the consumption of leafy greens. Growers are required to complete microbiological risk assessments (RAs) for the production of leafy crops supplied either to retail or for further processing. These RAs are based primarily on qualitative judgements of hazard and risks at various stages in the production process but lack many of the steps defined for quantitative microbiological RAs by the Codex Alimentarius Commission. This article is based on the discussions of an industry expert group and proposes a grower RA approach based on a structured qualitative assessment, which requires all decisions to be based on evidence and a framework for describing the decision process that can be challenged and defended within the supply chain. In addition, this article highlights the need for evidence to be more easily available and accessible to primary producers and identifies the need to develop hygiene criteria to aid validation of proposed interventions

    Tipburn resilience in lettuce (Lactuca spp.) – the importance of germplasm resources and production system‐specific assays

    Get PDF
    BACKGROUND Tipburn is a physiological disorder of lettuce (Lactuca spp.). It causes discoloration and collapse of leaf margins, leading to unsaleable crops in both protected (glasshouse, hydroponic) and outdoor production systems. The occurrence of tipburn is hard to predict and is sensitive to environmental conditions. Phenotyping for tipburn resilience requires diverse germplasm resources and, to date, limited material has been investigated for this condition. RESULTS Using a Lactuca diversity fixed foundation set (DFFS) under glasshouse conditions, we identified a significant (P < 0.001) genotypic effect on tipburn resilience across both the entire population and across lines belonging to the cultivated species L. sativa alone. Latuca sativa lines exhibited significantly (P < 0.05) higher average tipburn severity than those belonging to the wild species L. saligna, L. serriola, and L. virosa but we were able to identify both cultivated and wild tipburn-resilient lines. Leaf morphology factors, which included pigmentation, width, and serration, also significantly (P < 0.05) influenced tipburn resilience. Using a recombinant inbred line (RIL) mapping population derived from two DFFS lines, different small-effect quantitative trait loci (QTLs) accounting for 12.3% and 25.2% of total tipburn variation were identified in glasshouse and field conditions, respectively. CONCLUSIONS These results reflect the advantages of phenotyping under production-system-specific conditions for the examination of environmentally sensitive traits and highlight genetic markers and germplasm resources for the development of tipburn resilient lines for use in both protected and outdoor lettuce production

    Quantitative trait loci (QTLs) linked with root growth in lettuce (Lactuca sativa) seedlings

    Get PDF
    In-field variation of transplanted lettuce (Lactuca sativa L.) due to variable soil and environmental conditions is one of the major restrictions in the optimization of production and yield. Marker-assisted breeding for lettuce varieties with a more rapid rooting phenotype has the potential to improve the performance of lettuce transplants. This study aimed to identify traits linked with increased primary root length, lateral root length and lateral root emergence in 14-day L. sativa seedlings from an intra-specific cross (Saladin × Iceberg). In total, 16 significant quantitative trait loci (QTLs) were associated with increased root growth traits that would allow direct introgression of the traits. Six of the QTLs were associated with increased primary root growth, accounting for 60.2% of the genetic variation for the trait. Three QTLs were associated with lateral root growth (38.6% of genetic variation); two QTLs were associated with lateral root length density (27.6% of genetic variation) and three with root number density (33.4% of genetic variation), and two QTLs were associated with mean lateral root length (21.1% of genetic variation). The statistical QTLs were located across 9 different linkage groups (LGs) representing loci on 7 of the 9 L. sativa chromosomes. A combination of restriction fragment length polymorphism (RFLPs) and Kompetitive allele specific PCR (KASPs) markers linked to these rooting traits were identified, which could allow breeders to select for a rapid establishment phenotype
    corecore