9,321 research outputs found

    Atomic structure of Mn wires on Si(001) resolved by scanning tunneling microscopy

    Full text link
    At submonolayer coverage, Mn forms atomic wires on the Si(001) surface oriented perpendicular to the underlying Si dimer rows. While many other elements form symmetric dimer wires at room temperature, we show that Mn wires have an asymmetric appearance and pin the Si dimers nearby. We find that an atomic configuration with a Mn trimer unit cell can explain these observations due to the interplay between the Si dimer buckling phase near the wire and the orientation of the Mn trimer. We study the resulting four wire configurations in detail using high-resolution scanning tunneling microscopy (STM) imaging and compare our findings with STM images simulated by density functional theory.Comment: 4 pages, 4 figure

    Seasonality, precautionary savings and health uncertainty: Evidence from farm households in central Kenya

    Get PDF
    The high prevalence of risks in low income economies makes managing uncertainty critical for productivity and survival. This paper analyzes seasonal changes in farm households’ per capita consumption and saving in response to weather and health shocks. Using a sample of 196 households in central Kenya, it tests the notion that people save most of their transitory income, and examines their precautionary saving motives. The results show that the propensity to save out of transitory income is about a fifth of what the permanent income hypothesis postulates. The propensity to save differs by wealth, with the poor exhibiting stronger precautionary motives towards rainfall variability. But the wealth effect is weak, suggesting that the asset base is vulnerable even for the better-off. However, precautionary savings tend to increase with wealth among HIV/AIDS affected households. Since illness is associated with higher consumption, and therefore less investment, we find more volatile consumption for HIV/AIDS affected households

    An Extensible Benchmarking Infrastructure for Motion Planning Algorithms

    Full text link
    Sampling-based planning algorithms are the most common probabilistically complete algorithms and are widely used on many robot platforms. Within this class of algorithms, many variants have been proposed over the last 20 years, yet there is still no characterization of which algorithms are well-suited for which classes of problems. This has motivated us to develop a benchmarking infrastructure for motion planning algorithms. It consists of three main components. First, we have created an extensive benchmarking software framework that is included with the Open Motion Planning Library (OMPL), a C++ library that contains implementations of many sampling-based algorithms. Second, we have defined extensible formats for storing benchmark results. The formats are fairly straightforward so that other planning libraries could easily produce compatible output. Finally, we have created an interactive, versatile visualization tool for compact presentation of collected benchmark data. The tool and underlying database facilitate the analysis of performance across benchmark problems and planners.Comment: Submitted to IEEE Robotics & Automation Magazine (Special Issue on Replicable and Measurable Robotics Research), 201

    Photoacoustic detection of stimulated emission pumping in p-difluorobenzene

    Get PDF
    Photoacoustic detection has been used to monitor a stimulated emission pumping process in p‐difluorobenzene. Using the Ã^(1)B_(2u)5^1 state as an intermediate, several vibrational levels of the ground electronic state were populated. The photoacoustic method is an attractive alternative to other detection techniques because of its sensitivity, simplicity, and its ability to differentiate between stimulated emission pumping and excited state absorption. An example of excited state absorption in aniline is given
    • …
    corecore