35 research outputs found

    MicroMED: a dust particle counter for the characterization of airborne dust close to the surface of Mars

    Get PDF
    Monitoring of airborne dust is very important in planetary climatology. Indeed, dust absorbs and scatter solar and thermal radiation, severely affecting atmospheric thermal structure, balance and dynamics (in terms of circulations). Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. Dust is permanently present in the atmosphere of Mars and its amount varies with seasons. During regional or global dust storms, more than 80% of the incoming sunlight is absorbed by dust causing an intense atmospheric heating. Airborne dust is therefore a crucial climate component on Mars which impacts atmospheric circulations at all scales. Main dust parameters influencing the atmosphere heating are size distribution, abundance, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, major improvements of Mars climate models require, in addition to the standard meteorological parameters, quantitative information about dust lifting, transport and removal mechanisms. In this context, two major quantities need to be measured for the dust source to be understood: surface flux and granulometry. While many observations have constrained the size distribution of the dust haze seen from the orbit, it is still not known what the primary airborne dust (e.g. the recently lifted dust) is made of, size-wise. MicroMED has been designed to fill this gap. It will measure the abundance and size distribution of dust, not in the atmospheric column, but close to the surface, where dust is lifted, so to be able to monitor dust injection into the atmosphere. This has never been performed in Mars and other planets exploration. MicroMED is an Optical Particle Counter, analyzing light scattered from single dust particles to measure their size and abundance. A proper fluid-dynamic system, including a pump and a sampling head, allows the sampling of Martian atmosphere with embedded dust. The captured dust grains are detected by an Optical System and then ejected into the atmosphere. MicroMED is a miniaturization of the instrument MEDUSA, developed for the Humboldt payload of the ExoMars mission. An Elegant Breadboard has been developed and tested and successfully demonstrates the instrument performances. The design and performance test results will be discussed

    MicroMED: an optical particle counter for the direct in situ measurement of abundance and size distribution of dust suspended in the atmosphere of Mars

    Get PDF
    The MicroMED experiment has been developed for the characterization of airborne dust close to the surface of Mars and is suitable to be accommodated on Martian landers or rovers. It is an optical particle counter, analyzing light scattered from single dust particles to measure their size and abundance. An Elegant Breadboard of the instrument has been realized and successfully tested in a Martian simulated environment. Test results demonstrate the expected functionality and performances of the experiment. <P /

    Design and CFD Analysis of the Fluid Dynamic Sampling System of the “MicroMED” Optical Particle Counter

    Get PDF
    MicroMED is an optical particle counter that will be part of the ExoMars 2020 mission. Its goal is to provide the first ever in situ measurements of both size distribution and concentration of airborne Martian dust. The instrument samples Martian air, and it is based on an optical system that illuminates the sucked fluid by means of a collimated laser beam and detects embedded dust particles through their scattered light. By analyzing the scattered light profile, it is possible to obtain information about the dust grain size and speed. To do that, MicroMED’s fluid dynamic design should allow dust grains to cross the laser-illuminated sensing volume. The instrument’s Elegant Breadboard was previously developed and tested, and Computational Fluid Dynamic (CFD) analysis enabled determining its criticalities. The present work describes how the design criticalities were solved by means of a CFD simulation campaign. At the same time, it was possible to experimentally validate the results of the analysis. The updated design was then implemented to MicroMED’s Flight Model

    Electric properties of dust devils

    Get PDF
    Dust devils are one of the most effective phenomena able to inject dust grains into the atmosphere. On Mars, they play an important role to maintain the haze and can significantly affect the global dust loading, especially outside the dust storm season. Despite dust devils having been studied for a century and a half, many open questions regarding their physics still exist. In particular, the nature of the dust lifting mechanisms inside the vortices, the development of the induced electric field and the exact contribution to the global atmospheric dust budget are still debated topics. In this paper, we analyze the dust devil activity observed in the Moroccan Sahara desert during a 2014 field campaign. We have acquired the most comprehensive field data set presently available for the dust devils: including meteorological, atmospheric electric field and lifted dust concentration measurements. We focus our attention on the electric field induced by vortices, using this as the principal detection parameter. We present, for the first time, the statistical distribution of dust devil electric field and its relationships with the pressure drop, the horizontal and vertical vortex velocity and the total dust mass lifted. We also compare the pressure drop distribution of our sample with the ones observed on the martian surface showing the similarity of the dust devils samples and the usefulness of this study for the next martian surface missions

    Martian environmental chamber: Dust system injection

    Get PDF
    NessunaThe aim of this work is to describe the development and implementation of an experimental setup able to reproduce some characteristics of the Martian atmosphere. The development of such setup fits into the context of MicroMED project, that foresees the development of an optical particle counter to be accommodated on the ExoMars 2020 Surface Platform, as part of the suite of sensors named Dust Complex. MicroMED will perform the first direct measurement of the size distribution of the powder close to Martian surface. The experimental setup is able to reproduce the characteristics of the Martian atmosphere: pressure, atmospheric composition, the actual temperature in which MicroMED will operate (from 20 C to 40 C) and the most important thing: the presence of suspended dust. The main result obtained in this work was the right configuration of an experimental setup in which to test sensors or instruments that work in Martian conditions. In particular, a dust injection system has been developed in order to obtain a dust distribution that was localized and without the formation of particles aggregates, for a correct calibration of the instrument

    The Strong Relationship Between Dust Lifting and Atmospheric Electric Properties During Aeolian Processes

    Get PDF
    Results of field campaigns performed in the Sahara desert during the dust storm season. Focus on the observed enhancement of atm. E-field during dust events

    The effect of dust lifting process on the electrical properties of the atmosphere

    Get PDF
    Airborne dust and aerosol particles affect climate by absorbing and scattering thermal and solar radiation and acting as condensation nuclei for the formation of clouds. So, they strongly influence the atmospheric thermal structure, balance and circulation. On Earth and Mars, this 'climate forcing' is one of the most uncertain processes in climate change predictions. Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. These processes are not confined to Earth, but occur also on Mars, Venus and Titan. It is clear that the knowledge of the atmospheric dust properties and the mechanisms of dust settling and raising into the atmosphere are important to understand planetary climate and surface evolution. On Mars the physical processes responsible for dust injection into the atmosphere are still poorly understood, but they likely involve saltation as on Earth. Saltation is a process where large sand grains are forced by the wind to move in ballistic trajectories on the soil surface. During these hops they hit dust particles, that are well bound to the soil due to interparticle cohesive forces, thus transferring to them the momentum necessary to be entrained into the atmosphere. Recently, it has been shown that this process is also responsible to generate strong electric fields in the atmosphere up to 100-150 kV/m. This enhanced electric force acts as a feedback in the dust lifting process, lowering the threshold of the wind friction velocity u* necessary to initiate sand saltation. It is an important aspect of dust lifting process that need to be well characterized and modeled. Even if literature reports several measurements of E-fields in dust devils events, very few reports deal with atmospheric electric properties during dust storms or isolated gusts. We present here preliminary results of an intense field test campaign we performed in the West Sahara during the 2013 and 2014 dust storm seasons. We collected a statistical meaningful set of data characterizing relationship between dust lifting and atmospheric E-field that had never been achieved so far. <P /

    CFD analysis and optimization of the sensor “MicroMED” for the ExoMars 2020 mission

    Get PDF
    Characterization of dust is a key aspect in recent space missions to Mars. Dust has a huge influence on the planet's global climate and it is always present in its atmosphere. MicroMED is an optical particle counter that will be part of the "Dust Complex" suite led by IKI in the ExoMars 2020 mission and it will determine size distribution and concentration of mineral grains suspended in martian atmosphere. A Computational Fluid Dynamic (CFD) analysis was performed aimed at the optimization of the instrument's sampling efficiency in the 0.4-20 ÎĽm diameter range of the dust particles. The analysis allowed to understand which conditions are optimum for operations on Mars and to consequently optimize the instrument's fluid dynamic design

    The role of the atmospheric electric field in the dust-lifting process

    Get PDF
    Mineral dust particles represent the most abundant component of atmospheric aerosol in terms of dry mass. They play a key role in climate and climate change, so the study of their emission processes is of utmost importance. Measurements of dust emission into the atmosphere are scarce, so that the dust load is generally estimated using models. It is known that the emission process can generate strong atmospheric electric fields. Starting from the data we acquired in the Sahara desert, here, we show for the first time that depending on the relative humidity conditions, electric fields contribute to increase up to a factor of 10 the amount of particles emitted into the atmosphere. This means that electrical forces and humidity are critical quantities in the dust emission process and should be taken into account in climate and circulation models to obtain more realistic estimations of the dust load in the atmosphere. <P /

    The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    Get PDF
    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) instrument on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and its direction, but also on solar irradiance, dust opacity and atmospheric electrification; this comprehensive set of parameters would assist the quantification of risks and hazards for future manned exploration missions mainly related to the presence of airborne dust. Schiaparelli landing on Mars was in fact scheduled during the foreseen dust storm season (October 2016 in Meridiani Planum) allowing DREAMS to directly measure the characteristics of such extremely harsh environment. DREAMS instrument’s architecture was based on a modular design developing custom boards for analog and digital channel conditioning, power distribution, on board data handling and communication with the lander. The boards, connected through a common backbone, were hosted in a central electronic unit assembly and connected to the external sensors with dedicated harness. Designed with very limited mass and an optimized energy consumption, DREAMS was successfully tested to operate autonomously, relying on its own power supply, for at least two Martian days (sols) after landing on the planet. A total of three flight models were fully qualified before launch through an extensive test campaign comprising electrical and functional testing, EMC verification and mechanical and thermal vacuum cycling; furthermore following the requirements for planetary protection, contamination control activities and assay sampling were conducted before model delivery for final integration on spacecraft. During the six months cruise to Mars following the successful launch of ExoMars on 14th March 2016, periodic check outs were conducted to verify instrument health check and update mission timelines for operation. Elaboration of housekeeping data showed that the behaviour of the whole instrument was nominal during the whole cruise. Unfortunately DREAMS was not able to operate on the surface of Mars, due to the known guidance anomaly during the descent that caused Schiaparelli to crash at landing. The adverse sequence of events at 4 km altitude anyway triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. The spare models of DREAMS are currently in use at university premises for the development of autonomous units to be used in cubesat mission and in probes for stratospheric balloons launches in collaboration with Italian Space Agency
    corecore