43 research outputs found

    Multifaceted characterization and in vitro assessment of polyurethane-based electrospun fibrous composite for bone tissue engineering

    Get PDF
    Introduction: Recently several new approaches were emerging in bone tissue engineering to develop a substitute for remodelling the damaged tissue. In order to resemble the native extracellular matrix (ECM) of the human tissue, the bone scaffolds must possess necessary requirements like large surface area, interconnected pores and sufficient mechanical strength.Materials and methods: A novel bone scaffold has been developed using polyurethane (PE) added with wintergreen (WG) and titanium dioxide (TiO2). The developed nanocomposites were characterized through field emission scanning electron microscopy (FESEM), Fourier transform and infrared spectroscopy (FTIR), X-ray diffraction (XRD), contact angle measurement, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and tensile testing. Furthermore, anticoagulant assays, cell viability analysis and calcium deposition were used to investigate the biological properties of the prepared hybrid nanocomposites.Results: FESEM depicted the reduced fibre diameter for the electrospun PE/WG and PE/WG/TiO2 than the pristine PE. The addition of WG and TiO2 resulted in the alteration in peak intensity of PE as revealed in the FTIR. Wettability measurements showed the PE/WG showed decreased wettability and the PE/WG/TiO2 exhibited improved wettability than the pristine PE. TGA measurements showed the improved thermal behaviour for the PE with the addition of WG and TiO2. Surface analysis indicated that the composite has a smoother surface rather than the pristine PE. Further, the incorporation of WG and TiO2 improved the anticoagulant nature of the pristine PE. In vitro cytotoxicity assay has been performed using fibroblast cells which revealed that the electrospun composites showed good cell attachment and proliferation after 5 days. Moreover, the bone apatite formation study revealed the enhanced deposition of calcium content in the fabricated composites than the pristine PE.Conclusion: Fabricated nanocomposites rendered improved physico-chemical properties, biocompatibility and calcium deposition which are conducive for bone tissue engineering

    Engineering electrospun multicomponent polyurethane scaffolding platform comprising grapeseed oil and honey/propolis for bone tissue regeneration

    Get PDF
    Essential oils play an important role in reducing the pain and inflammation caused by bone fracture.In this study, a scaffold was electrospun based on polyurethane (PU), grape seed oil, honey and propolis for bone tissue-engineering applications. The fiber diameter of the electrospun PU/grape seed oil scaffold and PU/grape seed oil/honey/propolis scaffold were observed to be reduced compared to the pristine PU control. FTIR analysis revealed the existence of grape seed oil, honey and propolis in PU identified by CH band peak shift and also hydrogen bond formation. The contact angle of PU/grape seed oil scaffold was found to increase owing to hydrophobic nature and the contact angle for the PU/grape seed/honey oil/propolis scaffold were decreased because of hydrophilic nature. Further, the prepared PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold showed enhanced thermal stability and reduction in surface roughness than the control as revealed in thermogravimetric analysis (TGA) and atomic force microscopy (AFM) analysis. Further, the developed nanocomposite scaffold displayed delayed blood clotting time than the pristine PU in the activated prothrombin time (APTT) and partial thromboplastin time (PT) assay. The hemolytic assay and cytocompatibility studies revealed that the electrospun PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold possess non-Toxic behaviour to red blood cells (RBC) and human fibroblast cells (HDF) cells indicating better blood compatibility and cell viability rates. Hence, the newly developed electrospun nanofibrous composite scaffold with desirable characteristics might be used as an alternative candidate for bone tissue engineering applications

    Biomimetic electrospun polyurethane matrix composites with tailor made properties for bone tissue engineering scaffolds

    Get PDF
    Bone tissue scaffolds require appropriate properties conducive for new tissue growth. In this study, we prepared a novel electrospun nanofiber scaffold using polyurethane (PU), rosemary (RM) oil and copper sulphate (CuSO4) respectively. The properties of the developed membranes were established through scanning electron microscopy (FESEM), atomic force microscopy (AFM), attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), thermal gravimetric analysis (TGA), contact angle and mechanical testing. Further, blood compatibility and cytocompatibility assay were carried out to evaluate their biological responses. The developed composites rendered appropriate surface morphology with tailor made wettability and roughness. Composites with engineered physicochemical properties improved the blood and cytocompatible properties which can be potentially exploited for bone tissue engineering applications

    Grapefruit Oil and Cobalt Nitrate-Loaded Polyurethane Hybrid Nanofibrous Scaffold for Biomedical Applications

    Get PDF
    The goal of this work is to fabricate a new composite based on polyurethane (PU), grapefruit (GP) oil, and cobalt nitrate [Co(NO3)2] using an electrospinning technique. Morphology results revealed the reduction in the fiber diameter of the composites compared to pristine PU control. The interaction of PU with GP and Co(NO3)2 was confirmed by hydrogen bond formation evident in infrared analysis. The fabricated PU/GP composites depicted a more hydrophobic behavior, while PU/GP/Co(NO3)2 showed a hydrophilic behavior than the pristine PU. Atomic force micrographs (AFM) revealed that the developed composites showed a decrease in the surface roughness (Ra) compared to PU. The addition of GP and Co(NO3)2 improved the mechanical strength of the pristine PU. The blood compatibility assays concluded not only the increase in blood clotting levels but also the less toxic nature of the fabricated composites compared to the pristine PU. Hence, the newly designed composites possessing outstanding physicochemical and biological properties may be used as a potential candidate for scaffolding in tissue engineering applications

    Electrospun polyurethane nanofibrous composite impregnated with metallic copper for wound-healing application

    Get PDF
    In this study, a wound dressing based on polyurethane (PU) blended with copper sulphate nanofibers was developed using an electrospinning technique. The prepared PU and PU nanocomposites showed smooth fibers without any bead defects. The prepared nanocomposites showed smaller fiber (663 ± 156.30 nm) and pore (888 ± 70.93 nm) diameter compared to the pristine PU (fiber diameter 1159 ± 147.48 nm and pore diameter 1087 ± 62.51 nm). The interaction of PU with copper sulphate was evident in the infrared spectrum through hydrogen-bond formation. Thermal analysis displayed enhanced weight residue at higher temperature suggesting interaction of PU with copper sulphate. The contact angle measurements revealed the hydrophilic nature of the prepared nanocomposites (71° ± 2.309°) compared with pure PU (100° ± 0.5774°). The addition of copper sulphate into the PU matrix increased the surface roughness, as revealed in the atomic force microscopy (AFM) analysis. Mechanical testing demonstrated the enhanced tensile strength behavior of the fabricated nanocomposites (18.58 MPa) compared with the pristine PU (7.12 MPa). The coagulation assays indicated the enhanced blood compatibility of the developed nanocomposites [activated partial thromboplastin time (APTT)—179 ± 3.606 s and partial thromboplastin time (PT)—105 ± 2.646 s] by showing a prolonged blood clotting time compared with the pristine PU (APTT—147.7 ± 3.512 s and PT—84.67 ± 2.517 s). Furthermore, the hemolysis and cytotoxicity studies suggested a less toxicity nature of prepared nanocomposites by displaying low hemolytic index and enhanced cell viability rates compared with the PU membrane. It was observed that the fabricated novel wound dressing possesses better physicochemical and enhanced blood compatibility properties, and may be utilized for wound-healing applications

    Microwave-Assisted Dip Coating of Aloe Vera on Metallocene Polyethylene Incorporated with Nano-Rods of Hydroxyapaptite for Bone Tissue Engineering

    Get PDF
    Bone tissue engineering widely explores the use of ceramic reinforced polymer-matrix composites. Among the various widely-used ceramic reinforcements, hydroxyapatite is an undisputed choice due to its inherent osteoconductive nature. In this study, a novel nanocomposite comprising metallocene polyethylene (mPE) incorporated with nano-hydroxyapaptite nanorods (mPE-nHA) was synthesized and dip coated with Aloe vera after subjecting it to microwave treatment. The samples were characterized using contact angle, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM) and 3D Hirox microscopy scanning. Contact angle results show that the hydrophilicity of mPE-nHA improved notably with the coating of Aloe vera. The surface topology and increase in surface roughness were observed using the SEM, AFM and 3D Hirox microscopy. Blood compatibility assays of pure mPE and the Aloe vera coated nanocomposite were performed. The prothrombin time (PT) was delayed by 1.06% for 24 h Aloe-vera-treated mPE-nHA compared to the pristine mPE-nHA. Similarly, the 24 h Aloe-vera-coated mPE-nHA nanocomposite prolonged the activated partial thromboplastin time (APTT) by 41 s against the control of pristine mPE-nHA. The hemolysis percentage was also found to be the least for the 24 h Aloe-vera-treated mPE-nHA which was only 0.2449% compared to the pristine mPE-nHA, which was 2.188%. To conclude, this novel hydroxyapatite-reinforced, Aloe-vera-coated mPE with a better mechanical and anti-thrombogenic nature may hold a great potential to be exploited for bone tissue engineering applications

    Development and blood compatibility evaluation of novel fibrous textile scaffold based on polyurethane amalgamated with Alternanthera sessilis oil for the bone tissue engineering

    Get PDF
    In the recent decade, the growth of medical textiles is enormous and it paves the sustained development in the quality of life. In this research, an electrospun textile scaffold comprising polyurethane impregnated with Alternanthera sessilis oil was developed for the bone tissue engineering. Morphology analysis showed that the addition of Alternanthera sessilis oil in the polyurethane membrane resulted in reduced fiber diameter (821 ± 140.87 nm) compared to the pristine PU (890 ± 119.11 nm). The presence of Alternanthera sessilis oil in polyurethane membrane was confirmed through hydrogen bond formation as revealed in the infrared analysis. Further, the polyurethane blended with Alternanthera sessilis oil showed hydrophobic (113.7° ± 3.215) and improved surface roughness (329 nm) than the pristine polyurethane (contact angle – 100° ± 0.5774 and Ra – 313 nm). Moreover, the blood compatibility assessments revealed that the developed biocomponent polyurethane/Alternanthera sessilis oil membrane possesses enhanced anticoagulant nature compared to the pristine polyurethane. Finally, the newly developed biocomponent polyurethane/Alternanthera sessilis oil membrane with reduced fiber diameter, hydrophobic behavior, improved surface roughness, and enhanced blood compatibility enabled them as a potential candidate for bone tissue regeneration

    Single-stage synthesis of electrospun polyurethane scaffold impregnated with zinc nitrate nanofibers for wound healing applications

    No full text
    In this study, a wound dressing scaffold was developed based on polyurethane (PU, 9 wt %) incorporated with zinc nitrate nanofibers (9 wt %) using an electrospinning technique. The morphological studies revealed that the electrospun nanocomposites showed smaller fiber (568 ± 136.69 nm) and pore diameters (703 ± 60.76 nm) than the pure PU (fiber diameter 1159 ± 147.48 nm and pore diameter 1087 ± 62.51 nm). Energy-dispersive X-ray spectroscopy confirmed the presence of zinc nitrate in the PU matrix. The formation of hydrogen bonds and the enhanced weight residue found by Fourier transform infrared spectroscopy and thermogravimetric analysis revealed the interaction of PU with zinc nitrate. Moreover, the contact angle measurements revealed the hydrophilic nature of the electrospun nanocomposite (84° ± 4.041°) compared to the control (100° ± 0.5774°). Mechanical testing and atomic force microscopy showed an improvement in the tensile strength (15.98 MPa) and surface roughness (277 nm) of the fabricated nanocomposites compared to the PU membrane (tensile strength 7.12 MPa and surface roughness 216 nm). Further, incorporation of zinc nitrate into PU improved the blood compatibility, as demonstrated by the prolonged blood clotting time (APTT 188 ± 4 s and PT 102.7 ± 3.786 s) compared to the pure PU (APTT 147.7 ± 3.512 s and PT 84.67 ± 2.517 s), as revealed in coagulation assays. Moreover, the electrospun nanocomposites showed a low hemolytic index and enhanced fibroblast proliferation rates, as indicated in the hemolysis and cytocompatibility studies. The newly developed wound dressing displayed better physicochemical characteristics, prolonged blood clotting time, and enhanced fibroblast proliferation rates, indicating that it might be utilized as an alternate candidate for wound dressings

    Enriched mechanical strength and bone mineralisation of electrospun biomimetic scaffold laden with ylang ylang oil and zinc nitrate for bone tissue engineering

    No full text
    caffolds supplemented with naturally derived materials seem to be a good choice in bone tissue engineering. This study aims to develop polyurethane (PU) nanofibers added with ylang ylang (YY) and zinc nitrate (ZnNO3) using the electrospinning method. Field emission scanning electron microscopy (FESEM) images showed that the diameter of the PU nanofibers (869 ± 122 nm) was reduced with the addition of YY and ZnNO3 (PU/YY-467 ± 132 nm and PU/YY/ZnNO3-290 ± 163 nm). Fourier transform infrared (FTIR), a thermal gravimetric analysis (TGA) and an X-ray diffraction (XRD) analysis confirmed the interactions between PU with YY and ZnNO3. In addition, a thermal gravimetric analysis (TGA) study revealed the improved thermal stability for PU/YY and a slight reduction in the thermal stability for PU/YY/ZnNO3. A tensile test indicated that the addition of YY and ZnNO3 (PU/YY-12.32 MPa and PU/YY/ZnNO3-14.90 MPa) improved the mechanical properties of the pristine PU (6.83 MPa). The electrospun PU/YY (524 nm) and PU/YY/ZnNO3 (284 nm) showed a reduced surface roughness when compared with the pristine PU (776 nm) as depicted in the atomic force microscopy (AFM) analysis. The addition of YY and ZnNO3 improved the anticoagulant and biocompatibility nature of the pristine PU. Furthermore, the bone mineralization study depicted the improved calcium deposition in the fabricated composites (PU/YY-7.919% and PU/YY/ZnNO3-10.150%) compared to the pristine PU (5.323%). Hence, the developed composites with desirable physico-chemical properties, biocompatibility and calcium deposition can serve as plausible candidates for bone tissue engineering
    corecore