8 research outputs found

    Iron Deficiency Increases Growth and Nitrogen-Fixation Rates of Phosphorus-Deficient Marine Cyanobacteria

    Get PDF
    Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles

    Nitrogen fixation rates and controls at Stn ALOHA

    No full text

    Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic

    No full text
    Expression of nifH in 28 surface water samples collected during fall 2007 from six stations in the vicinity of the Cape Verde Islands (north-east Atlantic) was examined using reverse transcription-polymerase chain reaction (RT-PCR)-based clone libraries and quantitative RT-PCR (RT-qPCR) analysis of seven diazotrophic phylotypes. Biological nitrogen fixation (BNF) rates and nutrient concentrations were determined for these stations, which were selected based on a range in surface chlorophyll concentrations to target a gradient of primary productivity. BNF rates greater than 6 nmolN l−1 h−1 were measured at two of the near-shore stations where high concentrations of Fe and PO43− were also measured. Six hundred and five nifH transcripts were amplified by RT-PCR, of which 76% are described by six operational taxonomic units, including Trichodesmium and the uncultivated UCYN-A, and four non-cyanobacterial diazotrophs that clustered with uncultivated Proteobacteria. Although all five cyanobacterial phylotypes quantified in RT-qPCR assays were detected at different stations in this study, UCYN-A contributed most significantly to the pool of nifH transcripts in both coastal and oligotrophic waters. A comparison of results from RT-PCR clone libraries and RT-qPCR indicated that a γ-proteobacterial phylotype was preferentially amplified in clone libraries, which underscores the need to use caution interpreting clone-library-based nifH studies, especially when considering the importance of uncultivated proteobacterial diazotrophs

    Emerging patterns of marine nitrogen fixation

    No full text
    Biological N2 fixation is an important part of the marine nitrogen cycle as it provides a source of new nitrogen that can support biological carbon export and sequestration. Research in the past decade has focused on determining the patterns of distribution and abundance of diazotrophs, defining the environmental features leading to these patterns and characterizing the factors that constrain marine N2 fixation overall. In this Review, we describe how variations in the deposition of iron from dust to different ocean basins affects the limiting nutrient for N2 fixation and the distribution of different diazotrophic species. However, many questions remain about marine N2 fixation, including the role of temperature, fixed nitrogen species, CO2 and physical forcing in controlling N2 fixation, as well as the potential for heterotrophic N2 fixation

    Microbial oceanography and the Hawaii Ocean Time-series programme

    No full text
    corecore