49 research outputs found

    Neural activity of retinal ganglion cells under continuous, dynamically-modulated high frequency electrical stimulation

    Full text link
    Objective. Current retinal prosthetics are limited in their ability to precisely control firing patterns of functionally distinct retinal ganglion cell (RGC) types. The aim of this study was to characterise RGC responses to continuous, kilohertz-frequency-varying stimulation to assess its utility in controlling RGC activity. Approach. We used in vitro patch-clamp experiments to assess electrically-evoked ON and OFF RGC responses to frequency-varying pulse train sequences. In each sequence, the stimulation amplitude was kept constant while the stimulation frequency (0.5-10 kHz) was changed every 40 ms, in either a linearly increasing, linearly decreasing or randomised manner. The stimulation amplitude across sequences was increased from 10 to 300 µA. Main results. We found that continuous stimulation without rest periods caused complex and irreproducible stimulus-response relationships, primarily due to strong stimulus-induced response adaptation and influence of the preceding stimulus frequency on the response to a subsequent stimulus. In addition, ON and OFF populations showed different sensitivities to continuous, frequency-varying pulse trains, with OFF cells generally exhibiting more dependency on frequency changes within a sequence. Finally, the ability to maintain spiking behaviour to continuous stimulation in RGCs significantly reduced over longer stimulation durations irrespective of the frequency order. Significance. This study represents an important step in advancing and understanding the utility of continuous frequency modulation in controlling functionally distinct RGCs. Our results indicate that continuous, kHz-frequency-varying stimulation sequences provide very limited control of RGC firing patterns due to inter-dependency between adjacent frequencies and generally, different RGC types do not display different frequency preferences under such stimulation conditions. For future stimulation strategies using kHz frequencies, careful consideration must be given to design appropriate pauses in stimulation, stimulation frequency order and the length of continuous stimulation duration

    Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins

    Get PDF
    Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology

    Circulating microparticles: square the circle

    Get PDF
    Background: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes

    Inhibition of microvesiculation sensitizes prostate cancer cells to chemotherapy and reduces docetaxel dose required to limit tumor growth in vivo

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Microvesicles shed from cells carry constituents of the cell cytoplasm, including, of importance in multidrug resistance to cancer chemotherapy, drugs that the tumor cell attempts to efflux. To see whether such drugs could be used at lower concentrations with the same efficacy, it was first shown that microvesiculation of prostate cancer (PCa) cells, PC3, could be inhibited pharmacologically with calpeptin (calpain inhibitor) and by siRNA (CAPNS1). In cells treated with docetaxel (DTX), this inhibition resulted in a third-fold increase in intracellular concentrations of DTX. As a result, 20-fold lower concentrations of DTX (5 nM) could be used, in the presence of calpeptin (20μM) inducing the same degree of apoptosis after 48 h in PC3 cells, as 100 nM of DTX alone. Inhibition of microvesiculation similarly improved combination chemotherapy (DTX and methotrexate). In a mouse xenograft model of PCa, DTX (0.1 mg/kg) together with calpeptin (10 mg/kg), administered i.p., significantly reduced tumor volumes compared to DTX alone (0.1 mg/kg) and brought about the same reductions in tumor growth as 10 mg/kg of DTX alone. As well as further reducing vascularization, it also increased apoptosis and reduced proliferation of PC3 cells in tumor xenografts.Peer reviewe

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201
    corecore