164 research outputs found

    Age-Related Patterns in Clinical Presentations and Gluten-Related Issues Among Children and Adolescents With Celiac Disease

    Get PDF
    OBJECTIVES: Celiac disease (CD) is common and often cited as an “iceberg” phenomenon (i.e., an assumed large number of undiagnosed cases). Recently, atypical or asymptomatic manifestations are becoming more commonly described in older children and adolescents. Moreover, CD diagnosis in children can be complicated by several factors, including its diverse clinical presentations, delay in recognizing CD signs and symptoms, and premature dietary gluten avoidance before the formal diagnosis of CD. To date, few studies have directly examined age-related differences in clinical characteristics and gluten-related issues among children with CD. The aim of this study was to determine age-related patterns in clinical characteristics and gluten-related issues among children with confirmed CD. METHODS: We performed a structured medical record review of biopsy-proven CD patients, aged 0–19 years, between 2000 and 2010 at a large Boston teaching hospital. Data collection included demographics, medical history, gluten-related issues, and diagnostic investigations (CD-specific serology, upper gastrointestinal endoscopy, and small intestinal biopsy). The first positive duodenal biopsy with Marsh III classification defined age of diagnosis. Patients were divided into three age groups for comparisons of the aforementioned characteristics: infant-preschool group (0–5 years), school-aged group (6–11 years), and adolescence group (12–19 years). RESULTS: Among 411 children with biopsy-proven CD, the mean age was 9.5 (s.d. 5.1) years. Most were female (63%) and white (96%). All children had positive CD-specific serology. Most children presented with either abdominal complaints or bowel movement changes. Overall, boys were more common among infant-preschool group compared with the other age groups. More distinct clinical manifestations (vomiting, bowel movement changes, and weight issues) were apparent in the youngest group, whereas school-aged children had more subjective abdominal complaints at the initial presentation. Conversely, the adolescents were most likely to present without any gastrointestinal (GI) symptoms, but not when this was combined with absence of weight issues. Age of diagnosis was not associated with atypical extraintestinal CD presentations. Regarding the gluten-related issues, 10% of school-aged children avoided dietary gluten before the formal CD diagnosis, and 27% of the adolescents reported dietary gluten transgression within the first 12 months of diagnosis, significantly higher than the other age groups. Age differences in histopathology were also found. Whereas the infant-preschool group had a higher proportion of total villous atrophy, the older children were more likely to have gross duodenal abnormalities and chronic duodenitis suggestive of CD at the time of diagnosis. CONCLUSIONS: Children and adolescents with CD have age-related patterns in both the clinical presentations and gluten-related issues. More pronounced clinical and histological features were determined in younger children, whereas older children more commonly presented with solely subjective abdominal complaints or even without any GI symptoms. However, silent and atypical extraintestinal CD presentations were comparable between age groups. In addition to the aforementioned presentations, the higher rates of dietary gluten avoidance and transgression in older children make CD diagnosis and management particularly challenging. These age-related patterns may further increase awareness, facilitate early diagnosis, and improve patient care of pediatric CD

    Changing Epidemiology of Serious Bacterial Infections in Febrile Infants without Localizing Signs

    Get PDF
    Objective: Historically, management of infants with fever without localizing signs (FWLS) has generated much controversy, with attempts to risk stratify based on several criteria. Advances in medical practice may have altered the epidemiology of serious bacterial infections (SBIs) in this population. We conducted this study to test the hypothesis that the rate of SBIs in this patient population has changed over time. Patients and Methods: We performed a retrospective review of all infants meeting FWLS criteria at our institution from 1997–2006. We examined all clinical and outcome data and performed statistical analysis of SBI rates and ampicillin resistance rates. Results: 668 infants met criteria for FWLS. The overall rate of SBIs was 10.8%, with a significant increase from 2002–2006 (52/ 361, 14.4%) compared to 1997–2001 (20/307, 6.5%) (p = 0.001). This increase was driven by an increase in E. coli urinary tract infections (UTI), particularly in older infants (31–90 days). Conclusions: We observed a significant increase in E. coli UTI among FWLS infants with high rates of ampicillin resistance. The reasons are likely to be multifactorial, but the results themselves emphasize the need to examine urine in all febrile infants,90days and consider local resistance patterns when choosing empiric antibiotics

    CCL28 Induces Mucosal Homing of HIV-1-Specific IgA-Secreting Plasma Cells in Mice Immunized with HIV-1 Virus-Like Particles

    Get PDF
    Mucosae-associated epithelial chemokine (MEC or CCL28) binds to CCR3 and CCR10 and recruits IgA-secreting plasma cells (IgA-ASCs) in the mucosal lamina propria. The ability of this chemokine to enhance migration of IgA-ASCs to mucosal sites was assessed in a mouse immunization model using HIV-1IIIB Virus-like particles (VLPs). Mice receiving either HIV-1IIIB VLPs alone, CCL28 alone, or the irrelevant CCL19 chemokine were used as controls. Results showed a significantly increased CCR3 and CCR10 expression on CD19+ splenocytes of HIV-1IIIB VPL-CCL28-treated mice. HIV-1 Env-specific IFN-γ, IL-4 and IL-5 production, total IgA, anti-Env IgA as well as gastro-intestinal mucosal IgA-secreting plasma cells were also significantly augmented in these mice. Notably, sera and vaginal secretions from HIV-1IIIB VLP-CCL28-treated mice exhibited an enhanced neutralizing activity against both a HIV-1/B-subtype laboratory strain and a heterologous HIV-1/C-subtype primary isolate. These data suggest that CCL28 could be useful in enhancing the IgA immune response that will likely play a pivotal role in prophylactic HIV vaccines

    Cell cycle regulation by the Wee1 Inhibitor PD0166285, Pyrido [2,3-d] pyimidine, in the B16 mouse melanoma cell line

    Get PDF
    BACKGROUND: Wee1 kinase plays a critical role in maintaining G2 arrest through its inhibitory phosphorylation of cdc2. In previous reports, a pyridopyrimidine molecule PD0166285 was identified to inhibit Wee1 activity at nanomolar concentrations. This G2 checkpoint abrogation by PD0166285 was demonstrated to kill cancer cells, there at a toxic highest dose of 0.5 μM in some cell lines for exposure periods of no longer than 6 hours. The deregulated cell cycle progression may have ultimately damaged the cancer cells. We herein report one of the mechanism by which PD0166285 leads to cell death in the B16 mouse melanoma cell line. METHODS: Tumor cell proliferation was determined by counting cell numbers. Cell cycle distribution was determined by flow cytometry. Morphogenesis analysis such as microtubule stabilization, Wee1 distribution, and cyclin B location were observed by immunofluorescence confocal microscopy. An immunoblot analysis of cdc2-Tyr15, cyclin D, E, p16, 21, 27, and Rb. A real-time PCR of the mRNA of cyclin D were completed. RESULTS: In our experiment, B16 cells also dramatically abrogated the G2 checkpoint and were found to arrest in the early G1 phase by treatment with 0.5 μM for 4 hours observed by flow cytometry. Cyclin D mRNA decreased within 4 hours observed by Real-time PCR. Rb was dephosphrylated for 24 hours. However, B16 cells did not undergo cell death after 0.5 μM treatment for 24 hours. Immnofluoscence microscopy showed that the cells become round and small in the morphogenesis. More interesting phenomena were that microtubule stabilization was blocked, and Wee1 distribution was restricted after treatment for 4 hours. CONCLUSION: We analyzed the effect of Wee1 inhibitor PD0166285 described first by Wang in the G2 transition in the B16 melanoma cell line. The inhibitor PD0166285 abrogated G2/M checkpoint inducing early cell division. Moreover, we found that the treatment of cells with the inhibitor is related to microtubule stabilization and decrease in cyclin D transcription. These effects together suggest that Wee1 inhibitor may thus be a potentially useful anti-cancer therapy

    The impact of glucose-insulin-potassium infusion in acute myocardial infarction on infarct size and left ventricular ejection fraction [ISRCTN56720616]

    Get PDF
    BACKGROUND: Favorable clinical outcomes have been observed with glucose-insulin-potassium infusion (GIK) in acute myocardial infarction (MI). The mechanisms of this beneficial effect have not been delineated clearly. GIK has metabolic, anti-inflammatory and profibrinolytic effects and it may preserve the ischemic myocardium. We sought to assess the effect of GIK infusion on infarct size and left ventricular function, as part of a randomized controlled trial. METHODS: Patients (n = 940) treated for acute MI by primary percutaneous coronary intervention (PCI) were randomized to GIK infusion or no infusion. Endpoints were the creatinine kinase MB-fraction (CK-MB) and left ventricular ejection fraction (LVEF). CK-MB levels were determined 0, 2, 4, 6, 24, 48, 72 and 96 hours after admission and the LVEF was measured before discharge. RESULTS: There were no differences between the two groups in the time course or magnitude of CK-MB release: the peak CK-MB level was 249 ± 228 U/L in the GIK group and 240 ± 200 U/L in the control group (NS). The mean LVEF was 43.7 ± 11.0 % in the GIK group and 42.4 ± 11.7% in the control group (P = 0.12). A LVEF ≤ 30% was observed in 18% in the controls and in 12% of the GIK group (P = 0.01). CONCLUSION: Treatment with GIK has no effect on myocardial function as determined by LVEF and by the pattern or magnitude of enzyme release. However, left ventricular function was preserved in GIK treated patients

    Immunomodulation Targeting Abnormal Protein Conformation Reduces Pathology in a Mouse Model of Alzheimer's Disease

    Get PDF
    Many neurodegenerative diseases are characterized by the conformational change of normal self-proteins into amyloidogenic, pathological conformers, which share structural properties such as high β-sheet content and resistance to degradation. The most common is Alzheimer's disease (AD) where the normal soluble amyloid β (sAβ) peptide is converted into highly toxic oligomeric Aβ and fibrillar Aβ that deposits as neuritic plaques and congophilic angiopathy. Currently, there is no highly effective treatment for AD, but immunotherapy is emerging as a potential disease modifying intervention. A major problem with most active and passive immunization approaches for AD is that both the normal sAβ and pathogenic forms are equally targeted with the potential of autoimmune inflammation. In order to avoid this pitfall, we have developed a novel immunomodulatory method that specifically targets the pathological conformations, by immunizing with polymerized British amyloidosis (pABri) related peptide which has no sequence homology to Aβ or other human proteins. We show that the pABri peptide through conformational mimicry induces a humoral immune response not only to the toxic Aβ in APP/PS1 AD transgenic mice but also to paired helical filaments as shown on AD human tissue samples. Treated APP/PS1 mice had a cognitive benefit compared to controls (p<0.0001), associated with a reduction in the amyloid burden (p = 0.0001) and Aβ40/42 levels, as well as reduced Aβ oligomer levels. This type of immunomodulation has the potential to be a universal β-sheet disrupter, which could be useful for the prevention or treatment of a wide range of neurodegenerative diseases

    Alzheimer disease models and human neuropathology: similarities and differences

    Get PDF
    Animal models aim to replicate the symptoms, the lesions or the cause(s) of Alzheimer disease. Numerous mouse transgenic lines have now succeeded in partially reproducing its lesions: the extracellular deposits of Aβ peptide and the intracellular accumulation of tau protein. Mutated human APP transgenes result in the deposition of Aβ peptide, similar but not identical to the Aβ peptide of human senile plaque. Amyloid angiopathy is common. Besides the deposition of Aβ, axon dystrophy and alteration of dendrites have been observed. All of the mutations cause an increase in Aβ 42 levels, except for the Arctic mutation, which alters the Aβ sequence itself. Overexpressing wild-type APP alone (as in the murine models of human trisomy 21) causes no Aβ deposition in most mouse lines. Doubly (APP × mutated PS1) transgenic mice develop the lesions earlier. Transgenic mice in which BACE1 has been knocked out or overexpressed have been produced, as well as lines with altered expression of neprilysin, the main degrading enzyme of Aβ. The APP transgenic mice have raised new questions concerning the mechanisms of neuronal loss, the accumulation of Aβ in the cell body of the neurons, inflammation and gliosis, and the dendritic alterations. They have allowed some insight to be gained into the kinetics of the changes. The connection between the symptoms, the lesions and the increase in Aβ oligomers has been found to be difficult to unravel. Neurofibrillary tangles are only found in mouse lines that overexpress mutated tau or human tau on a murine tau −/− background. A triply transgenic model (mutated APP, PS1 and tau) recapitulates the alterations seen in AD but its physiological relevance may be discussed. A number of modulators of Aβ or of tau accumulation have been tested. A transgenic model may be analyzed at three levels at least (symptoms, lesions, cause of the disease), and a reading key is proposed to summarize this analysis
    corecore