109 research outputs found

    Epithelial-immune cell interplay in primary Sjogren syndrome salivary gland pathogenesis

    Get PDF
    In primary Sjogren syndrome (pSS), the function of the salivary glands is often considerably reduced. Multiple innate immune pathways are likely dysregulated in the salivary gland epithelium in pSS, including the nuclear factor-kappa B pathway, the inflammasome and interferon signalling. The ductal cells of the salivary gland in pSS are characteristically surrounded by a CD4(+) T cell-rich and B cell-rich infiltrate, implying a degree of communication between epithelial cells and immune cells. B cell infiltrates within the ducts can initiate the development of lymphoepithelial lesions, including basal ductal cell hyperplasia. Vice versa, the epithelium provides chronic activation signals to the glandular B cell fraction. This continuous stimulation might ultimately drive the development of mucosa-associated lymphoid tissue lymphoma. This Review discusses changes in the cells of the salivary gland epithelium in pSS (including acinar, ductal and progenitor cells), and the proposed interplay of these cells with environmental stimuli and the immune system. Current therapeutic options are insufficient to address both lymphocytic infiltration and salivary gland dysfunction. Successful rescue of salivary gland function in pSS will probably demand a multimodal therapeutic approach and an appreciation of the complicity of the salivary gland epithelium in the development of pSS. Salivary gland dysfunction is an important characteristic of primary Sjogren syndrome (pSS). In this Review, the authors discuss various epithelial abnormalities in pSS and the mechanisms by which epithelial cell-immune cell interactions contribute to disease development and progression

    TLR3-mediated apoptosis and activation of phosphorylated Akt in the salivary gland epithelial cells of primary Sjögren’s syndrome patients

    Get PDF
    This study aimed at ascertain whether innate immunity is involved in the apoptosis of primary cultured salivary gland epithelial cells (SGECs) in primary Sjögren\u27s syndrome (pSS). Induction of apoptosis of SGECs was performed using a TLR3 ligand, poly (I:C). Activation of phosphorylated-Akt (pAkt) and cleaved-caspase 3 was determined by Western blotting or immunofluorescence. Expression of TLR2 and TLR3 with pAkt was observed in cultured SGECs after 24-h stimulation with each ligand. Compared with stimulation with the peptidoglycan or lipopolysaccharide, that with poly (I:C) induced significant nuclear fragmentation, as determined by Hoechst staining (p = 0.0098). Apoptosis was confirmed by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) staining of SGECs from pSS patients and a normal subject. A significant increase in TUNEL-positive cells was observed by the addition of a PI3K inhibitor, LY294002. Poly (I:C) phosphorylated stress-activated protein kinase/Jun-terminal kinase and p44/42 MAP kinase as well as Akt. Furthermore, poly (I:C)-induced caspase 3 cleavage in SGECs was also inhibited by LY294002. Similar results were obtained using SGECs obtained from a normal subject. The results demonstrated for the first time that TLR3 induces the apoptotic cell death of SGECs via the PI3K-Akt signaling pathway
    corecore