8 research outputs found

    Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients

    Get PDF
    Recent studies suggest that genetic and environmental factors do not account for all the schizophrenia risk and epigenetics also plays a role in disease susceptibility. DNA methylation is a heritable epigenetic modification that can regulate gene expression. Genome-Wide DNA methylation analysis was performed on post-mortem human brain tissue from 24 patients with schizophrenia and 24 unaffected controls. DNA methylation was assessed at over 485 000 CpG sites using the Illumina Infinium Human Methylation450 Bead Chip. After adjusting for age and post-mortem interval (PMI), 4 641 probes corresponding to 2 929 unique genes were found to be differentially methylated. Of those genes, 1 291 were located in a CpG island and 817 were in a promoter region. These include NOS1, AKT1, DTNBP1, DNMT1, PPP3CC and SOX10 which have previously been associated with schizophrenia. More than 100 of these genes overlap with a previous DNA methylation study of peripheral blood from schizophrenia patients in which 27 000 CpG sites were analysed. Unsupervised clustering analysis of the top 3 000 most variable probes revealed two distinct groups with significantly more people with schizophrenia in cluster one compared to controls (p = 1.74x10-4). The first cluster was composed of 88% of patients with schizophrenia and only 12% controls while the second cluster was composed of 27% of patients with schizophrenia and 73% controls. These results strongly suggest that differential DNA methylation is important in schizophrenia etiology and add support for the use of DNA methylation profiles as a future prognostic indicator of schizophrenia

    Comparison of common perioperative blood loss estimation techniques: a systematic review and meta-analysis

    No full text
    Estimating intraoperative blood loss is one of the daily challenges for clinicians. Despite the knowledge of the inaccuracy of visual estimation by anaesthetists and surgeons, this is still the mainstay to estimate surgical blood loss. This review aims at highlighting the strengths and weaknesses of currently used measurement methods. A systematic review of studies on estimation of blood loss was carried out. Studies were included investigating the accuracy of techniques for quantifying blood loss in vivo and in vitro. We excluded nonhuman trials and studies using only monitoring parameters to estimate blood loss. A meta-analysis was performed to evaluate systematic measurement errors of the different methods. Only studies that were compared with a validated reference e.g. Haemoglobin extraction assay were included. 90 studies met the inclusion criteria for systematic review and were analyzed. Six studies were included in the meta-analysis, as only these were conducted with a validated reference. The mixed effect meta-analysis showed the highest correlation to the reference for colorimetric methods (0.93 95% CI 0.91-0.96), followed by gravimetric (0.77 95% CI 0.61-0.93) and finally visual methods (0.61 95% CI 0.40-0.82). The bias for estimated blood loss (ml) was lowest for colorimetric methods (57.59 95% CI 23.88-91.3) compared to the reference, followed by gravimetric (326.36 95% CI 201.65-450.86) and visual methods (456.51 95% CI 395.19-517.83). Of the many studies included, only a few were compared with a validated reference. The majority of the studies chose known imprecise procedures as the method of comparison. Colorimetric methods offer the highest degree of accuracy in blood loss estimation. Systems that use colorimetric techniques have a significant advantage in the real-time assessment of blood loss

    Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics

    No full text
    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism

    The epidemiology of hepatitis C virus in Iran: Systematic review and meta-analyses

    No full text
    corecore