11 research outputs found
On Counting Triangles through Edge Sampling in Large Dynamic Graphs
Traditional frameworks for dynamic graphs have relied on processing only the
stream of edges added into or deleted from an evolving graph, but not any
additional related information such as the degrees or neighbor lists of nodes
incident to the edges. In this paper, we propose a new edge sampling framework
for big-graph analytics in dynamic graphs which enhances the traditional model
by enabling the use of additional related information. To demonstrate the
advantages of this framework, we present a new sampling algorithm, called Edge
Sample and Discard (ESD). It generates an unbiased estimate of the total number
of triangles, which can be continuously updated in response to both edge
additions and deletions. We provide a comparative analysis of the performance
of ESD against two current state-of-the-art algorithms in terms of accuracy and
complexity. The results of the experiments performed on real graphs show that,
with the help of the neighborhood information of the sampled edges, the
accuracy achieved by our algorithm is substantially better. We also
characterize the impact of properties of the graph on the performance of our
algorithm by testing on several Barabasi-Albert graphs.Comment: A short version of this article appeared in Proceedings of the 2017
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM 2017
Triangle Counting in Dynamic Graph Streams
Estimating the number of triangles in graph streams using a limited amount of
memory has become a popular topic in the last decade. Different variations of
the problem have been studied, depending on whether the graph edges are
provided in an arbitrary order or as incidence lists. However, with a few
exceptions, the algorithms have considered {\em insert-only} streams. We
present a new algorithm estimating the number of triangles in {\em dynamic}
graph streams where edges can be both inserted and deleted. We show that our
algorithm achieves better time and space complexity than previous solutions for
various graph classes, for example sparse graphs with a relatively small number
of triangles. Also, for graphs with constant transitivity coefficient, a common
situation in real graphs, this is the first algorithm achieving constant
processing time per edge. The result is achieved by a novel approach combining
sampling of vertex triples and sparsification of the input graph. In the course
of the analysis of the algorithm we present a lower bound on the number of
pairwise independent 2-paths in general graphs which might be of independent
interest. At the end of the paper we discuss lower bounds on the space
complexity of triangle counting algorithms that make no assumptions on the
structure of the graph.Comment: New version of a SWAT 2014 paper with improved result