11 research outputs found

    On Counting Triangles through Edge Sampling in Large Dynamic Graphs

    Full text link
    Traditional frameworks for dynamic graphs have relied on processing only the stream of edges added into or deleted from an evolving graph, but not any additional related information such as the degrees or neighbor lists of nodes incident to the edges. In this paper, we propose a new edge sampling framework for big-graph analytics in dynamic graphs which enhances the traditional model by enabling the use of additional related information. To demonstrate the advantages of this framework, we present a new sampling algorithm, called Edge Sample and Discard (ESD). It generates an unbiased estimate of the total number of triangles, which can be continuously updated in response to both edge additions and deletions. We provide a comparative analysis of the performance of ESD against two current state-of-the-art algorithms in terms of accuracy and complexity. The results of the experiments performed on real graphs show that, with the help of the neighborhood information of the sampled edges, the accuracy achieved by our algorithm is substantially better. We also characterize the impact of properties of the graph on the performance of our algorithm by testing on several Barabasi-Albert graphs.Comment: A short version of this article appeared in Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2017

    Triangle Counting in Dynamic Graph Streams

    Get PDF
    Estimating the number of triangles in graph streams using a limited amount of memory has become a popular topic in the last decade. Different variations of the problem have been studied, depending on whether the graph edges are provided in an arbitrary order or as incidence lists. However, with a few exceptions, the algorithms have considered {\em insert-only} streams. We present a new algorithm estimating the number of triangles in {\em dynamic} graph streams where edges can be both inserted and deleted. We show that our algorithm achieves better time and space complexity than previous solutions for various graph classes, for example sparse graphs with a relatively small number of triangles. Also, for graphs with constant transitivity coefficient, a common situation in real graphs, this is the first algorithm achieving constant processing time per edge. The result is achieved by a novel approach combining sampling of vertex triples and sparsification of the input graph. In the course of the analysis of the algorithm we present a lower bound on the number of pairwise independent 2-paths in general graphs which might be of independent interest. At the end of the paper we discuss lower bounds on the space complexity of triangle counting algorithms that make no assumptions on the structure of the graph.Comment: New version of a SWAT 2014 paper with improved result
    corecore