Estimating the number of triangles in graph streams using a limited amount of
memory has become a popular topic in the last decade. Different variations of
the problem have been studied, depending on whether the graph edges are
provided in an arbitrary order or as incidence lists. However, with a few
exceptions, the algorithms have considered {\em insert-only} streams. We
present a new algorithm estimating the number of triangles in {\em dynamic}
graph streams where edges can be both inserted and deleted. We show that our
algorithm achieves better time and space complexity than previous solutions for
various graph classes, for example sparse graphs with a relatively small number
of triangles. Also, for graphs with constant transitivity coefficient, a common
situation in real graphs, this is the first algorithm achieving constant
processing time per edge. The result is achieved by a novel approach combining
sampling of vertex triples and sparsification of the input graph. In the course
of the analysis of the algorithm we present a lower bound on the number of
pairwise independent 2-paths in general graphs which might be of independent
interest. At the end of the paper we discuss lower bounds on the space
complexity of triangle counting algorithms that make no assumptions on the
structure of the graph.Comment: New version of a SWAT 2014 paper with improved result