59 research outputs found

    Variation in 5-hydroxymethylcytosine across human cortex and cerebellum

    Get PDF
    Background: The most widely utilized approaches for quantifying DNA methylation involve the treatment of genomic DNA with sodium bisulfite; however, this method cannot distinguish between 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Previous studies have shown that 5hmC is enriched in the brain, although little is known about its genomic distribution and how it differs between anatomical regions and individuals. In this study, we combine oxidative bisulfite (oxBS) treatment with the Illumina Infinium 450K BeadArray to quantify genome-wide patterns of 5hmC in two distinct anatomical regions of the brain from multiple individuals. Results: We identify 37,145 and 65,563 sites passing our threshold for detectable 5hmC in the prefrontal cortex and cerebellum respectively, with 23,445 loci common across both brain regions. Distinct patterns of 5hmC are identified in each brain region, with notable differences in the genomic location of the most hydroxymethylated loci between these brain regions. Tissue-specific patterns of 5hmC are subsequently confirmed in an independent set of prefrontal cortex and cerebellum samples. Conclusions: This study represents the first systematic analysis of 5hmC in the human brain, identifying tissue-specific hydroxymethylated positions and genomic regions characterized by inter-individual variation in DNA hydroxymethylation. This study demonstrates the utility of combining oxBS-treatment with the Illumina 450k methylation array to systematically quantify 5hmC across the genome and the potential utility of this approach for epigenomic studies of brain disorders

    Soilborne Diseases and their Control

    Get PDF
    Seed and seedling diseases, root rots, and wilts are caused by a number of soilborne fungi, all of which are facultative saprophytes and can survive in soil for long periods in the absence of a susceptible host. In general, these diseases are serious yield constraints where short rotations or monoculture of legume crops are the rule. Seedling diseases and root rots are enhanced by poor seed vigor, poor seedbed preparation, and other biotic and abiotic stresses which predispose the host plant. Control of these diseases requires an integrated approach of genetic resistance/tolerance, cultural practices, appropriate seed treatments, and high seed vigor. The most economical and durable control of Fusarium wilt is to grow resistant varieties. New races of a wilt pathogen have arisen due to increased selection pressure from growing resistant varieties in short rotations but have not outpaced the development of resistant cultivars

    Computing the radius of controllability for state space systems

    No full text
    In this paper, we discuss the problem of computing the nearest uncontrollable system to a given control system represented by a matrix pair (A, B). In order to do so, we construct a sequence of structured matrices from given system matrices A and B. Controllability of the pair (A, B) is equivalent to a condition on the null-space dimension of an appropriate matrix in this sequence. We show that the dimension of the reachability space is also related to the above condition. Further, it is shown that the nearest Structured Low Rank Approximation (SLRA) of this structured matrix corresponds to a nearest uncontrollable system to the pair (A, B). (C) 2011 Elsevier B.V. All rights reserved
    corecore