15 research outputs found

    The Spread of Inequality

    Get PDF
    The causes of socioeconomic inequality have been debated since the time of Plato. Many reasons for the development of stratification have been proposed, from the need for hierarchical control over large-scale irrigation systems to the accumulation of small differences in wealth over time via inheritance processes. However, none of these explains how unequal societies came to completely displace egalitarian cultural norms over time. Our study models demographic consequences associated with the unequal distribution of resources in stratified societies. Agent-based simulation results show that in constant environments, unequal access to resources can be demographically destabilizing, resulting in the outward migration and spread of such societies even when population size is relatively small. In variable environments, stratified societies spread more and are also better able to survive resource shortages by sequestering mortality in the lower classes. The predictions of our simulation are provided modest support by a range of existing empirical studies. In short, the fact that stratified societies today vastly outnumber egalitarian societies may not be due to the transformation of egalitarian norms and structures, but may instead reflect the more rapid migration of stratified societies and consequent conquest or displacement of egalitarian societies over time

    Exploratory Study of Executive Function Abilities Across the Adult Lifespan in Individuals Receiving an ASD Diagnosis in Adulthood

    Get PDF
    The few studies of autism spectrum disorder (ASD) across adulthood suggest different age-related associations in different aspects of executive function (EF). In this exploratory study we examined EF abilities and self-report autism traits in 134 adults (aged 18-75 years; mean=31 years) with abilities in the normal range, receiving a first diagnosis of ASD. Results suggest that in some EF relying on speed and sequencing (Trails A and B; Digit Symbol), late-diagnosed ASD individuals may demonstrate better performance than typical age-norms. On other EF (Digit Span, Hayling, Brixton tests) age-related correlations were similar to typical age-norms. Different domains of EF may demonstrate different trajectories for ageing with ASD, with patterns of slower, accelerated or equivalent age-related change observed across different measures

    Exploratory Study of Executive Function Abilities Across the Adult Lifespan in Individuals Receiving an ASD Diagnosis in Adulthood

    Get PDF
    The few studies of autism spectrum disorder (ASD) across adulthood suggest different age-related associations in different aspects of executive function (EF). In this exploratory study we examined EF abilities and self-report autism traits in 134 adults (aged 18-75 years; mean=31 years) with abilities in the normal range, receiving a first diagnosis of ASD. Results suggest that in some EF relying on speed and sequencing (Trails A and B; Digit Symbol), late-diagnosed ASD individuals may demonstrate better performance than typical age-norms. On other EF (Digit Span, Hayling, Brixton tests) age-related correlations were similar to typical age-norms. Different domains of EF may demonstrate different trajectories for ageing with ASD, with patterns of slower, accelerated or equivalent age-related change observed across different measures

    Illuminating the life of GPCRs

    Get PDF
    The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented

    7

    No full text
    corecore