26 research outputs found
Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains
The ISWI family of ATP-dependent chromatin remodelers represses transcription by changing nucleosome positioning. The interactions with extranucleosomal DNA and the requirement of a minimal length of extranucleosomal DNA by ISWI mediate the spacing of nucleosomes. ISW2 from Saccharomyces cerevisiae, a member of the ISWI family, has a conserved domain called SLIDE (SANT-like ISWI domain), whose binding to extranucleosomal DNA ~19 bp from the edge of nucleosomes is required for efficiently pushing DNA into nucleosomes and maintaining the unidirectional movement of nucleosomes, as reported here. Loss of SLIDE binding does not perturb ATPase domain binding to the SHL2 site of nucleosomes or its initial movement of DNA inside of nucleosomes. ISW2 has therefore two distinct roles in mobilizing nucleosomes, with the ATPase domain translocating and moving DNA inside nucleosomes, and the SLIDE domain facilitating the entry of linker DNA into nucleosomes
Lighting up nucleosome spacing
The mechanism by which ATP-dependent remodeling enzymes act to space nucleosomes is as yet unclear. A new study uses FRET to monitor nucleosome repositioning in real time to address how these enzymes sense when nucleosomes are evenly distributed.</p