9 research outputs found
Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella
Background: Foodborne outbreaks of Salmonella remain a pressing public health concern. We recently detected a large outbreak of Salmonella enterica serovar Enteritidis phage type 14b affecting more than 30 patients in our hospital. This outbreak was linked to community, national and European-wide cases. Hospital patients with Salmonella are at high risk, and require a rapid response. We initially investigated this outbreak by whole-genome sequencing using a novel rapid protocol on the Illumina MiSeq; we then integrated these data with whole-genome data from surveillance sequencing, thereby placing the outbreak in a national context. Additionally, we investigated the potential of a newly released sequencing technology, the MinION from Oxford Nanopore Technologies, in the management of a hospital outbreak of Salmonella. Results: We demonstrate that rapid MiSeq sequencing can reduce the time to answer compared to the standard sequencing protocol with no impact on the results. We show, for the first time, that the MinION can acquire clinically relevant information in real time and within minutes of a DNA library being loaded. MinION sequencing permits confident assignment to species level within 20 min. Using a novel streaming phylogenetic placement method samples can be assigned to a serotype in 40 min and determined to be part of the outbreak in less than 2 h. Conclusions: Both approaches yielded reliable and actionable clinical information on the Salmonella outbreak in less than half a day. The rapid availability of such information may facilitate more informed epidemiological investigations and influence infection control practices
Identification of longevity-associated genes in long-lived Snell and Ames dwarf mice
Recent landmark molecular genetic studies have identified an evolutionarily conserved insulin/IGF-1 signal transduction pathway that regulates lifespan. In C. elegans, Drosophila, and rodents, attenuated insulin/IGF-1 signaling appears to regulate lifespan and enhance resistance to environmental stress. The Ames (Prop1df/df) and Snell (Pit1dw/dw) hypopituitary dwarf mice with growth hormone (GH), thyroid-stimulating hormone (TSH), and prolactin deficiencies live 40–60% longer than control mice. Both mutants are resistant to multiple forms of environmental stress in vitro. Taken collectively, these genetic models indicate that diminished insulin/IGF-l signaling may play a central role in the determination of mammalian lifespan by conferring resistance to exogenous and endogenous stressors. These pleiotropic endocrine pathways control diverse programs of gene expression that appear to orchestrate the development of a biological phenotype that promotes longevity. With the ability to investigate thousands of genes simultaneously, several microarray surveys have identified potential longevity assurance genes and provided information on the mechanism(s) by which the dwarf genotypes (dw/dw) and (df/df), and caloric restriction may lead to longevity. We propose that a comparison of specific changes in gene expression shared between Snell and Ames dwarf mice may provide a deeper understanding of the transcriptional mechanisms of longevity determination. Furthermore, we propose that a comparison of the physiological consequences of the Pit1dw and Prop1df mutations may reveal transcriptional profiles similar to those reported for the C. elegans and Drosophila mutants. In this study we have identified classes of genes whose expression is similarly affected in both Snell and Ames dwarf mice. Our comparative microarray data suggest that specific detoxification enzymes of the P450 (CYP) family as well as oxidative and steroid metabolism may play a key role in longevity assurance of the Snell and Ames dwarf mouse mutants. We propose that the altered expression of these genes defines a biochemical phenotype which may promote longevity in Snell and Ames dwarf mice
Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study
Background Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications. Methods We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC). Findings In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]). Interpretation In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required. Funding British Journal of Surgery Society