24 research outputs found

    Agarose Spot as a Comparative Method for in situ Analysis of Simultaneous Chemotactic Responses to Multiple Chemokines

    Get PDF
    yesWe describe a novel protocol to quantitatively and simultaneously compare the chemotactic responses of cells towards different chemokines. In this protocol, droplets of agarose gel containing different chemokines are applied onto the surface of a Petri dish, and then immersed under culture medium in which cells are suspended. As chemokine molecules diffuse away from the spot, a transient chemoattractant gradient is established across the spots. Cells expressing the corresponding cognate chemokine receptors migrate against this gradient by crawling under the agarose spots towards their centre. We show that this migration is chemokine-specific; meaning that only cells that express the cognate chemokine cell surface receptor, migrate under the spot containing its corresponding chemokine ligand. Furthermore, we show that migration under the agarose spot can be modulated by selective small molecule antagonists present in the cell culture medium

    Suppression of Ribosomal Function Triggers Innate Immune Signaling through Activation of the NLRP3 Inflammasome

    Get PDF
    Some inflammatory stimuli trigger activation of the NLRP3 inflammasome by inducing efflux of cellular potassium. Loss of cellular potassium is known to potently suppress protein synthesis, leading us to test whether the inhibition of protein synthesis itself serves as an activating signal for the NLRP3 inflammasome. Murine bone marrow-derived macrophages, either primed by LPS or unprimed, were exposed to a panel of inhibitors of ribosomal function: ricin, cycloheximide, puromycin, pactamycin, and anisomycin. Macrophages were also exposed to nigericin, ATP, monosodium urate (MSU), and poly I:C. Synthesis of pro-IL-ß and release of IL-1ß from cells in response to these agents was detected by immunoblotting and ELISA. Release of intracellular potassium was measured by mass spectrometry. Inhibition of translation by each of the tested translation inhibitors led to processing of IL-1ß, which was released from cells. Processing and release of IL-1ß was reduced or absent from cells deficient in NLRP3, ASC, or caspase-1, demonstrating the role of the NLRP3 inflammasome. Despite the inability of these inhibitors to trigger efflux of intracellular potassium, the addition of high extracellular potassium suppressed activation of the NLRP3 inflammasome. MSU and double-stranded RNA, which are known to activate the NLRP3 inflammasome, also substantially inhibited protein translation, supporting a close association between inhibition of translation and inflammasome activation. These data demonstrate that translational inhibition itself constitutes a heretofore-unrecognized mechanism underlying IL-1ß dependent inflammatory signaling and that other physical, chemical, or pathogen-associated agents that impair translation may lead to IL-1ß-dependent inflammation through activation of the NLRP3 inflammasome. For agents that inhibit translation through decreased cellular potassium, the application of high extracellular potassium restores protein translation and suppresses activation of the NLRP inflammasome. For agents that inhibit translation through mechanisms that do not involve loss of potassium, high extracellular potassium suppresses IL-1ß processing through a mechanism that remains undefined

    Extracellular histones in tissue injury and inflammation.

    No full text
    Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes

    Multiparametric Functional MRI: A Tool to Uncover Subtle Changes following Allogeneic Renal Transplantation

    Get PDF
    Purpose To investigate multiparametric functional MRI to characterize acute rejection in a murine allogeneic renal transplant model and evaluate the effect of novel therapeutics. Material and Methods We performed allogeneic and syngeneic orthotopic transplantations (Balb/c to C57Bl/6 and C57Bl/6 to C57Bl/6). Allogeneic Groups (n = 5) were either treated with the anti-CCL2-Spiegelmer (mNOX-E36) in monotherapy or in combination with low doses of Ciclosporin-A (10mg/kgBW/d) for 10 days. Controls received equivalent doses of a non-functional spiegelmer (revmNOX-E36) or low dose Ciclosporin-A. Diffusion-weighted (DWI) and Dynamic-contrast-enhanced (DCE-) MRI-scans were performed using a clinical 3T-scanner. DWI analysis (b-values from 0-800 s/mm(2)) was performed mono-and biexponentially, while DCE-MRI was assessed with deconvolution analysis. Therapy effects were assessed ex vivo with histopathology, immunohistochemistry and RT-PCR. Statistical analysis was performed with unpaired t-tests and Spearman As correlation coefficient. Results DWI showed a significant diffusion restriction in allogeneic compared to syngeneic transplants (ADC: 0.63 +/- 0.08 vs. 1.29 +/- 0.12 mm(2)/s*10(3)) with decreasing diffusion restriction under therapy. DCE-MRI showed restored organ perfusion under Ciclosporin A alone and combination therapy (Plasma Flow: 43.43 +/- 12.49;38.75 +/- 7.53ml/100ml/min) compared to syngeneic controls (51.03 +/- 12.49ml/100ml/min). Ex vivo analysis showed reduced monocytic infiltrates, attenuated levels of inflammatory cytokines under mNOX-E36 monotherapy with an additive effect of low dose Ciclosporin A. There was a significant (p<0.05) negative correlation between ADC and interstitial inflammation (r = -0.73) or macrophage infiltration (r = -0.81) and between organ perfusion and intimal arteritis (r = -0.63). Conclusion Multiparametric functional MRI is suited to detect renal allograft rejection in an experimental murine model and allows to characterize effects of immunosuppressive therapy alleviating acute rejection processes in allogeneic transplantation
    corecore