14 research outputs found

    Drug delivery: Anti-cancer capsules

    No full text

    Self-Assembled Stimuli-Responsive Polyrotaxane Core-Shell Particles

    Get PDF
    Thermodynamically assembled core-shell nanocarriers are potential candidates for drug delivery applications due to their submicrometer size and the ability to load drugs into their hydrophobic core. Herein, we describe the formation of core-shell particles that consist of noncovalent polymers, that is, polyrotaxanes (PRXs), that form an α-cyclodextrin (αCD) core surrounded by a corona of low-fouling poly(ethylene glycol) (PEG). The PRX core-shell particles are able to sequester small organic molecules, such as pyrene and calcein, releasing these small molecules during degradation. The small, cellular peptide, glutathione, was used to degrade the particles through the reductive cleavage of disulfide bonds that stabilize the individual PRX polymers. Cleavage of a single bond allows for the degradation of the supramolecular-polymer, making these PRX core-shell particles highly responsive. Furthermore, these particles demonstrate negligible cytotoxicity in mammalian cells, making them promising carriers for future drug delivery research

    Targeting Cancer Cells: Controlling the Binding and Internalization of Antibody-Functionalized Capsules

    Get PDF
    The development of nanoengineered particles, such as polymersomes, liposomes, and polymer capsules, has the potential to offer significant advances in vaccine and cancer therapy. However, the effectiveness of these carriers has the potential to be greatly improved if they can be specifically delivered to target cells. We describe a general method for functionalizing nanoengineered polymer capsules with antibodies using click chemistry and investigate their interaction with cancer cells in vitro. The binding efficiency to cells was found to be dependent on both the capsule-to-cell ratio and the density of antibody on the capsule surface. In mixed cell populations, more than 90% of target cells bound capsules when the capsule-to-target cell ratio was 1:1. Strikingly, greater than 50% of target cells exhibited capsules on the cell surface even when the target cells were present as less than 0.1% of the total cell population. Imaging flow cytometry was used to quantify the internalization of the capsules, and the target cells were found to internalize capsules efficiently. However, the role of the antibody in this process was determined to enhance accumulation of capsules on the cell surface rather than promote endocytosis. This represents a significant finding, as this is the first study into the role antibodies play in internalization of such capsules. It also opens up the possibility of targeting these capsules to cancer cells using targeting molecules that do not trigger an endocytic pathway. We envisage that this approach will be generally applicable to the specific targeting of a variety of nanoengineered materials to cells

    Particles on the Move: Intracellular Trafficking and Asymmetric Mitotic Partitioning of Nanoporous Polymer Particles

    Get PDF
    Nanoporous polymer particles (NPPs) prepared by mesoporous silica templating show promise as a new class of versatile drug/gene delivery vehicles owning to their high payload capacity, functionality, and responsiveness. Understanding the cellular dynamics of such particles, including uptake, intracellular trafficking, and distribution, is an important requirement for their development as therapeutic carriers. Herein, we examine the spatiotemporal map of the cellular processing of submicrometer-sized disulfide-bonded poly(methacrylic acid) (PMASH) NPPs in HeLa cells using both flow cytometry and fluorescence microscopy. The data show that the PMASH NPPs are transported from the early endosomes to the lysosomes within a few minutes. Upon cell division, the lysosome-enclosed PMASH NPPs are distributed asymmetrically between two daughter cells. Statistical analysis of cells during cytokinesis suggests that partitioning of particles is biased with an average segregation deviation of 60%. Further, two-dimensional difference gel electrophoresis (2D-DIGE) analysis reveals that 127 out of 3059 identified spots are differentially regulated upon exposure to the PMASH NPPs. Pathway analysis of the proteomics data suggests that ubiquitylation, a reversible modification of cellular proteins with ubiquitin, plays a central role in overall cellular responses to the particles. These results provide important insights into the cellular dynamics and heterogeneity of NPPs, as well as the mechanisms that regulate the motility of these particles within cells, all of which have important implications for drug susceptibility characteristics in cancer cells using particle-based carriers

    Targeting of Cancer Cells Using Click-Functionalized Polymer Capsules

    Get PDF
    Targeted delivery of drugs to specific cells allows a high therapeutic dose to be delivered to the target site with minimal harmful side effects. Combining targeting molecules with nanoengineered drug carriers, such as polymer capsules, micelles and polymersomes, has significant potential to improve the therapeutic delivery and index of a range of drugs. We present a general approach for functionalization of low-fouling, nanoengineered polymer capsules with antibodies using click chemistry. We demonstrate that antibody (Ab)-functionalized capsules specifically bind to colorectal cancer cells even when the target cells constitute less than 0.1% of the total cell population. This precise targeting offers promise for drug delivery applications

    Bio-Click Chemistry: Enzymatic Functionalization of PEGylated Capsules for Targeting Applications

    Get PDF
    All sorted: The enzyme Sortase A was used to catalyze functionalization of PEGylated capsules with an activation-specific anti-platelet single-chain antibody (scFv). This enzymatic method allows fast, covalent, and site-directed functionalization of delivery vehicles under mild conditions. Activation-specific anti-platelet scFv-coated PEGylated capsules exhibited a high level of selective binding to thrombi, thus suggesting their potential for thrombosis therapy

    Differential Roles of the Protein Corona in the Cellular Uptake of Nanoporous Polymer Particles by Monocyte and Macrophage Cell Lines

    Get PDF
    Many biomolecules, mainly proteins, adsorb onto polymer particles to form a dynamic protein corona in biological environments. The protein corona can significantly influence particle-cell interactions, including internalization and pathway activation. In this work, we demonstrate the differential roles of a given protein corona formed in cell culture media in particle uptake by monocytes and macrophages. By exposing disulfide-stabilized poly(methacrylic acid) nanoporous polymer particles (PMASH NPPs) to complete cell growth media containing 10% fetal bovine serum, a protein corona, with the most abundant component being bovine serum albumin, was characterized. Upon adsorption onto the PMASH NPPs, native bovine serum albumin (BSA) was found to undergo conformational changes. The denatured BSA led to a significant decrease in internalization efficiency in human monocytic cells, THP-1, compared with the bare particles, due to reduced cell membrane adhesion. In contrast, the unfolded BSA on the NPPs triggered class A scavenger receptor-mediated phagocytosis in differentiated macrophage-like cells (dTHP-1) without a significant impact on the overall internalization efficiency. Taken together, this work demonstrates the disparate effects of a given protein corona on particle-cell interactions, highlighting the correlation between protein corona conformation in situ and relevant biological characteristics for biological functionalities
    corecore