20 research outputs found

    Dynamic, Task-Related and Demand-Driven Scene Representation

    Get PDF
    Humans selectively process and store details about the vicinity based on their knowledge about the scene, the world and their current task. In doing so, only those pieces of information are extracted from the visual scene that is required for solving a given task. In this paper, we present a flexible system architecture along with a control mechanism that allows for a task-dependent representation of a visual scene. Contrary to existing approaches, our system is able to acquire information selectively according to the demands of the given task and based on the system’s knowledge. The proposed control mechanism decides which properties need to be extracted and how the independent processing modules should be combined, based on the knowledge stored in the system’s long-term memory. Additionally, it ensures that algorithmic dependencies between processing modules are resolved automatically, utilizing procedural knowledge which is also stored in the long-term memory. By evaluating a proof-of-concept implementation on a real-world table scene, we show that, while solving the given task, the amount of data processed and stored by the system is considerably lower compared to processing regimes used in state-of-the-art systems. Furthermore, our system only acquires and stores the minimal set of information that is relevant for solving the given task

    Infants in Control: Rapid Anticipation of Action Outcomes in a Gaze-Contingent Paradigm

    Get PDF
    Infants' poor motor abilities limit their interaction with their environment and render studying infant cognition notoriously difficult. Exceptions are eye movements, which reach high accuracy early, but generally do not allow manipulation of the physical environment. In this study, real-time eye tracking is used to put 6- and 8-month-old infants in direct control of their visual surroundings to study the fundamental problem of discovery of agency, i.e. the ability to infer that certain sensory events are caused by one's own actions. We demonstrate that infants quickly learn to perform eye movements to trigger the appearance of new stimuli and that they anticipate the consequences of their actions in as few as 3 trials. Our findings show that infants can rapidly discover new ways of controlling their environment. We suggest that gaze-contingent paradigms offer effective new ways for studying many aspects of infant learning and cognition in an interactive fashion and provide new opportunities for behavioral training and treatment in infants

    Predicting Eye Fixations on Complex Visual Stimuli Using Local Symmetry

    Get PDF
    Most bottom-up models that predict human eye fixations are based on contrast features. The saliency model of Itti, Koch and Niebur is an example of such contrast-saliency models. Although the model has been successfully compared to human eye fixations, we show that it lacks preciseness in the prediction of fixations on mirror-symmetrical forms. The contrast model gives high response at the borders, whereas human observers consistently look at the symmetrical center of these forms. We propose a saliency model that predicts eye fixations using local mirror symmetry. To test the model, we performed an eye-tracking experiment with participants viewing complex photographic images and compared the data with our symmetry model and the contrast model. The results show that our symmetry model predicts human eye fixations significantly better on a wide variety of images including many that are not selected for their symmetrical content. Moreover, our results show that especially early fixations are on highly symmetrical areas of the images. We conclude that symmetry is a strong predictor of human eye fixations and that it can be used as a predictor of the order of fixation

    Practice of Metabolic Medicine

    No full text
    corecore