21 research outputs found

    IGF-I activates caspases 3/7, 8 and 9 but does not induce cell death in colorectal cancer cells

    Get PDF
    Background: Colorectal cancer is the third most common cancer in the western world. Chemotherapy is often ineffective to treat the advanced colorectal cancers due to the chemoresistance. A major contributor to chemo-resistance is tumour-derived inhibition or avoidance of apoptosis. Insulin-like growth factor I (IGF-I) has been known to play a prominent role in colorectal cancer development and progression. The role of IGF-I in cancer cell apoptosis is not completely understood.Methods: Using three colorectal cancer cell lines and one muscle cell line, associations between IGF-I and activities of caspase 3/7, 8 and 9 have been examined; the role of insulin-like growth factor I receptor (IGF-IR) in the caspase activation has been investigated.Results: The results show that exogenous IGF-I significantly increases activity of caspases 3/7, 8 and 9 in all cell lines used; blocking IGF-I receptor reduce IGF-I-induced caspase activation. Further studies demonstrate that IGF-I induced caspase activation does not result in cell death. This is the first report to show that while IGF-I activates caspases 3/7, 8 and 9 it does not cause colorectal cancer cell death.Conclusion: The study suggests that caspase activation is not synonymous with apoptosis and that activation of caspases may not necessarily induce cell death

    Inhibition of IGF-1R-dependent PI3K activation sensitizes colon cancer cells specifically to DR5-mediated apoptosis but not to rhTRAIL

    Get PDF
    Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) initiates apoptosis in tumor cells upon binding to its cognate agonistic receptors, death receptors 4 and 5 (DR4 and DR5). The activity of the insulin-like growth factor 1 (IGF-1) survival pathway is often increased in cancer, influencing both cell proliferation and apoptosis. We hypothesized that inhibiting the IGF-1 receptor (IGF-1R) using NVP-AEW541, a small molecular weight tyrosine kinase inhibitor of the IGF-1R, could increase death receptor (DR)-mediated apoptosis in colon cancer cells

    The Insulin Receptor Substrate 1 (Irs1) in Intestinal Epithelial Differentiation and in Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) is associated with lifestyle factors that affect insulin/IGF signaling, of which the insulin receptor substrate 1 (IRS1) is a key transducer. We investigated expression, localization and pathologic correlations of IRS1 in cancer-uninvolved colonic epithelium, primary CRCs with paired liver metastases and in vitro polarizing Caco2 and HT29 cells. IRS1 mRNA and protein resulted higher, relative to paired mucosa, in adenomas of familial adenomatous polyposis patients and in CRCs that overexpressed c-MYC, ß-catenin, InsRß, and IGF1R. Analysis of IRS1 immunostaining in 24 cases of primary CRC with paired colonic epithelium and hepatic metastasis showed that staining intensity was significantly higher in metastases relative to both primary CRC (P<0.01) and colonic epithelium (P<0.01). Primary and metastatic CRCs, compared to colonic epithelium, contained significantly higher numbers of IRS1-positive cells (P = 0.013 and P = 0.014, respectively). Pathologic correlations in 163 primary CRCs revealed that diffuse IRS1 staining was associated with tumors combining differentiated phenotype and aggressive markers (high Ki67, p53, and ß-catenin). In Caco 2 IRS1 and InsR were maximally expressed after polarization, while IGF1R was highest in pre-polarized cells. No nuclear IRS1 was detected, while, with polarization, phosphorylated IRS1 (pIRS1) shifted from the lateral to the apical plasma membrane and was expressed in surface cells only. In HT29, that carry mutations constitutively activating survival signaling, IRS1 and IGF1R decreased with polarization, while pIRS1 localized in nuclear spots throughout the course. Overall, these data provide evidence that IRS1 is modulated according to CRC differentiation, and support a role of IRS1 in CRC progression and liver metastatization

    Obesity and colorectal cancer: molecular features of adipose tissue

    Full text link

    Insulin-like growth factors are more effective than progastrin in reversing proapoptotic effects of curcumin: critical role of p38MAPK

    No full text
    Progastrin and insulin-like growth factors (IGFs) stimulate hyperproliferation of intestinal epithelial cells (IECs) via endocrine/paracrine routes; hyperproliferation is a known risk factor for colon carcinogenesis. In the present study, inhibitory potency of curcumin in the presence or absence of progastrin and/or IGF-II was examined. Progastrin and IGF-II significantly increased proliferation of an immortalized IEC cell line, IEC-18, whereas curcumin decreased the proliferation in a dose-dependent manner. IGF-II was significantly more effective than progastrin in reversing antiproliferative effects of curcumin and reversed proapoptotic effects of curcumin by >80%; progastrin was relatively ineffective toward reversing proapoptotic effects of curcumin. IEC-18 clones were generated to overexpress either progastrin (IEC-PG) or hIGF-II (IEC-IGF). Proliferation of IEC-PG and IEC-IGF clones was increased, compared with that of control clones. Curcumin significantly reduced proliferation of IEC-PG, but not IEC-IGF, clones. Similarly, a human colon cancer cell line, Caco-2 (which expresses autocrine IGF-II), was relatively resistant to inhibitory effects of curcumin. However, Caco-2 cells treated with anti-IGF-II-antibodies were rendered sensitive to inhibitory effects of curcumin. Significant differences in inhibitory potency of curcumin against PG- vs. IGF-II-stimulated growth of IEC-18 cells were not reflected by differences in curcumin-mediated inhibition of activated (phosphorylated) ERKs/IKKα/β/p65NF-κB and c-Src in wild-type (wt)IEC-18 cells, in response to the two growth factors. Surprisingly, curcumin was almost ineffective in reducing IGF-II-stimulated activation of p38MAPK but significantly reduced progastrin-stimulated phosphorylation of p38. Treatment with a p38MAPK inhibitor resulted in loss of protective effects of IGF-II against inhibitory effects of curcumin. These novel findings suggest that growth factor profile of patients and tumors may dictate inhibitory potency of curcumin and that combination of curcumin + p38MAPK inhibitor may be required for reducing hyperproliferative or tumorigenic response of IECs to endocrine and autocrine IGFs

    Insulin-like growth factor-1 activates Akt and Jun N-terminal kinases (JNKs) in promoting the survival of T lymphocytes

    No full text
    Insulin-like growth factor 1 receptor (IGF-1R) expression is augmented on T cells upon ligation of CD28, and this promotes IGF-1-mediated protection from Fas-induced cell death for up to 6 days. To determine the mechanism of action of IGF-1R in T-cell expansion, we investigated the signalling pathways activated by IGF-1 in T cells and in Jurkat cells. We found that IGF-1 transiently induces Akt, jun N-terminal kinases (JNK), and c-Jun phosphorylation in activated T cells, with JNK and c-Jun phosphorylation occurring faster than Akt phosphorylation. To mimic IGF-1R expression levels in CD28-stimulated Jurkat cells these cells were stably transfected to over-express the IGF-1R. Jurkat/IGF-1R cells exhibited enhanced constitutive Akt phosphorylation compared with mock-transfected controls, but IGF-1 induced transient phosphorylation of MKK4, JNKs, and c-Jun. Inhibition of PI-3 kinase activity and Akt phosphorylation with LY294002 totally suppressed IGF-1-mediated protection from Fas killing in activated T cells, but only partially suppressed IGF-1-mediated protection in Jurkat/IGF-1R cells. However, either dicumarol in T cells or a dominant negative JNK1 (APF) in Jurkat/IGF-1R cells greatly suppressed IGF-1-mediated protection from Fas killing. Together, these data demonstrate that IGF-1-mediated activation of JNKs and PI-3 kinase contributes to normal T-cell survival, whereas the JNK pathway may be more important in Jurkat leukaemia cells
    corecore