9 research outputs found

    Dissolution Testing of Sublingual Tablets: A Novel In Vitro Method

    No full text
    In the sublingual (SL) cavity, compared with the gastrointestinal tract, tablets are subjected to minimal physiological agitation, and a limited volume of saliva is available to facilitate disintegration and dissolution. None of the official compendial dissolution apparatuses and methods simulate these SL conditions. In this study, a custom-made dissolution apparatus was constructed, and a novel in vitro method that simulates SL conditions was evaluated. Several epinephrine 40 mg SL tablet formulations under development and two commercial SL tablets, isosorbide dinitrate 5 mg and nitroglycerin 0.6 mg, were studied. The dissolution medium was 2 mL of distilled water at 25°C. Dissolution was measured at 60 and 120 s. The novel in vitro method was validated for accuracy, reproducibility, and discrimination capability, and was compared with the official US Pharmacopeia (USP) dissolution method using apparatus 2 (Paddle). The data obtained following the novel in vitro method were accurate and reproducible. This method was capable of detecting minor changes in SL formulations that could not be detected using other in vitro tests. Results from the official USP dissolution method and our novel in vitro method were significantly different (p < 0.05). Results reflecting the dissolution of rapidly disintegrating tablets using simulated SL conditions were obtained using the novel in vitro dissolution method

    An Electronic Tongue: Evaluation of the Masking Efficacy of Sweetening and/or Flavoring Agents on the Bitter Taste of Epinephrine

    No full text
    An epinephrine (E) tablet is under development for sublingual (SL) administration for the first-aid treatment of anaphylaxis; however, the inherent bitterness of E may hinder acceptability by patients, especially children. To assess the degree of E bitterness and to predict the masking effects of sweetening and/or flavoring non-medicinal ingredients (NMIs), the potential usefulness of an electronic tongue (e-Tongue) was evaluated. The e-Tongue sensors were conditioned, calibrated, and tested for taste discrimination. Six standard active pharmaceutical ingredients were used to build and validate a bitterness model which was then used to assess E bitartrate (EB) solutions from 0.3–9 mM. Taste-masking efficiency of aspartame (ASP), acesulfame potassium (ASK), and citric acid (CA) each at 0.5 mM was evaluated. Using EB 9 mM, the bitterness score was 20 on a scale of 20 (unacceptable) down to 1 (not detected). When NMIs 0.5 mM were added, neither ASK (17.2, unacceptable) nor was ASP (14.0, limit acceptable) effective in masking the bitter taste. When the combination of ASK and ASP was used, the bitterness score was reduced to 9.2 (acceptable). However, the addition of CA alone resulted in the best reduction of the bitterness score to 3.3 (not detected). Using the e-Tongue, the incorporation of a variety of sweetening and/or flavoring NMIs into a SL tablet of E could be shown to mask its bitter taste by up to 80%. These results should be confirmed by in vivo studies

    Fast-disintegrating sublingual tablets: Effect of epinephrine load on tablet characteristics

    No full text
    The aim of this study was to evaluate the effect of increasing epinephrine load on the characteristics of fast-disintegrating sublingual tablets for the potential emergency treatment of anaphylaxis. Four tablet formulations, A, B, C, and D, containing 0%, 6%, 12%, and 24% of epinephrine bitartrate, respectively, and microcrystalline cellulose:low-substituted hydroxypropyl cellulose (9∶1), were prepared by direct compression, at a range of compression forces. Tablet weight variation, content uniformity, hardness, disintegration time, wetting time, and friability were measured for each formulation at each compression force. All 4 tablet formulations at each compression force were within the United States Pharmacopeia (USP) limits for weight variation and content uniformity. A linear increase in compression force resulted in an exponential increase in hardness for all formulations, a linear increase in disintegration and wetting times of A, and an exponential increase in disintegration and wetting times of B, C, and D. At a mean±SD hardness of ≥2.3±0.2 kg, all tablet formulations passed the USP friability test. At a mean±SD hardness of ≤3.1±0.2 kg, all tablet formulations resulted in disintegration and wetting times of <10 seconds and <30 seconds, respectively. Tablets with drug loads from 0% to 24% epinephrine can be formulated with hardness, disintegration times, and wetting times suitable for sublingual administration

    Formulation of a Novel Tianeptine Sodium Orodispersible Film

    No full text
    The present investigation was undertaken with the objective of formulating orodispersible film(s) of the antidepressant drug tianeptine sodium to enhance the convenience and compliance by the elderly and pediatric patients. The novel film former, lycoat NG73 (granular hydroxypropyl starch), along with different film-forming agents (hydroxypropyl methyl cellulose, hydroxyethyl cellulose, and polyvinyl alcohol), in addition to three film modifiers; namely, maltodextrin, polyvinyl pyrrolidone K90 and lycoat RS780 (pregelatinized hydroxypropyl starch) were evaluated. Eight formulae were prepared by the solvent-casting method; and were evaluated for their in vitro dissolution characteristics, in vitro disintegration time, and their physico-mechanical properties. The promising orodispersible film based on lycoat NG73 (F1); showing the greatest drug dissolution, satisfactory in vitro disintegration time and physico-mechanical properties that are suitable for orodispersible films, was evaluated for its bioavailability compared with a reference marketed product (Stablon® tablets) in rabbits. Statistical analysis revealed no significant difference between the bioavailability parameters (Cmax (ng/ml), tmax (h), AUC0–t (ng h ml−1), and AUC0–∞ (ng h ml−1)] of the test film (F1) and the reference product. The mean ratio values (test/reference) of Cmax (89.74%), AUC0–t (110.9%), and AUC0–∞ (109.21%) indicated that the two formulae exhibited comparable plasma level-time profiles. These findings suggest that the fast orodispersible film containing tianeptine is likely to become one of choices for acute treatment of depression

    Dissolution Improvement of Electrospun Nanofiber-Based Solid Dispersions for Acetaminophen

    No full text
    The objective of the present investigation was to prepare novel solid dispersions (SDs) of poorly water-soluble drugs with special microstructural characteristics using electrospinning process. With the hydrophilic polymer polyvinylpyrrolidone as the filament-forming polymer and acetaminophen (APAP) as the poorly water-soluble drug model, SDs having a continuous web structure, and in the form of non-woven nanofiber membranes, were successfully prepared. The electrospun nanofiber-based SDs were compared with those prepared from three traditional SD processes such as freeze-drying, vacuum drying, and heating drying. The surface morphologies, the drug physical status, and the drug-polymer interactions were investigated by scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and attenuated total reflectance Fourier transform infrared. In vitro dissolution tests demonstrated that the electrospun nanofibers released 93.8% of the APAP content in the first 2 minutes and that the dissolution rates of APAP from the different SDs had the following order: electrospun membrane > vacuum-dried membrane ≈ freeze-dried membrane > heat-dried membrane. Electrospun nanofiber-based SDs showed markedly better dissolution-improving effects than the other SDs, mainly due to their huge surface area, high porosity resulting from web structure, and the more homogeneous distribution of APAP in the nanofiber matrix
    corecore