1,372 research outputs found

    Pfeiffer syndrome

    Get PDF
    Pfeiffer syndrome is a rare autosomal dominantly inherited disorder that associates craniosynostosis, broad and deviated thumbs and big toes, and partial syndactyly on hands and feet. Hydrocephaly may be found occasionally, along with severe ocular proptosis, ankylosed elbows, abnormal viscera, and slow development. Based on the severity of the phenotype, Pfeiffer syndrome is divided into three clinical subtypes. Type 1 "classic" Pfeiffer syndrome involves individuals with mild manifestations including brachycephaly, midface hypoplasia and finger and toe abnormalities; it is associated with normal intelligence and generally good outcome. Type 2 consists of cloverleaf skull, extreme proptosis, finger and toe abnormalities, elbow ankylosis or synostosis, developmental delay and neurological complications. Type 3 is similar to type 2 but without a cloverleaf skull. Clinical overlap between the three types may occur. Pfeiffer syndrome affects about 1 in 100,000 individuals. The disorder can be caused by mutations in the fibroblast growth factor receptor genes FGFR-1 or FGFR-2. Pfeiffer syndrome can be diagnosed prenatally by sonography showing craniosynostosis, hypertelorism with proptosis, and broad thumb, or molecularly if it concerns a recurrence and the causative mutation was found. Molecular genetic testing is important to confirm the diagnosis. Management includes multiple-staged surgery of craniosynostosis. Midfacial surgery is performed to reduce the exophthalmos and the midfacial hypoplasia

    Anomalous structure in the single particle spectrum of the fractional quantum Hall effect

    Get PDF
    The two-dimensional electron system (2DES) is a unique laboratory for the physics of interacting particles. Application of a large magnetic field produces massively degenerate quantum levels known as Landau levels. Within a Landau level the kinetic energy of the electrons is suppressed, and electron-electron interactions set the only energy scale. Coulomb interactions break the degeneracy of the Landau levels and can cause the electrons to order into complex ground states. In the high energy single particle spectrum of this system, we observe salient and unexpected structure that extends across a wide range of Landau level filling fractions. The structure appears only when the 2DES is cooled to very low temperature, indicating that it arises from delicate ground state correlations. We characterize this structure by its evolution with changing electron density and applied magnetic field. We present two possible models for understanding these observations. Some of the energies of the features agree qualitatively with what might be expected for composite Fermions, which have proven effective for interpreting other experiments in this regime. At the same time, a simple model with electrons localized on ordered lattice sites also generates structure similar to those observed in the experiment. Neither of these models alone is sufficient to explain the observations across the entire range of densities measured. The discovery of this unexpected prominent structure in the single particle spectrum of an otherwise thoroughly studied system suggests that there exist core features of the 2DES that have yet to be understood.Comment: 15 pages, 10 figure

    Evidence for a fractional quantum Hall state with anisotropic longitudinal transport

    Get PDF
    At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau level (LL), a clean two-dimensional electron system (2DES) exhibits numerous incompressible liquid phases which display the fractional quantized Hall effect (FQHE) (Das Sarma and Pinczuk, 1997). These liquid phases do not break rotational symmetry, exhibiting resistivities which are isotropic in the plane. In contrast, at lower fields, when the Fermi level lies in the N2N\ge2 third and several higher LLs, the 2DES displays a distinctly different class of collective states. In particular, near half filling of these high LLs the 2DES exhibits a strongly anisotropic longitudinal resistance at low temperatures (Lilly et al., 1999; Du et al., 1999). These "stripe" phases, which do not exhibit the quantized Hall effect, resemble nematic liquid crystals, possessing broken rotational symmetry and orientational order (Koulakov et al., 1996; Fogler et al., 1996; Moessner and Chalker, 1996; Fradkin and Kivelson, 1999; Fradkin et al, 2010). Here we report a surprising new observation: An electronic configuration in the N=1 second LL whose resistivity tensor simultaneously displays a robust fractionally quantized Hall plateau and a strongly anisotropic longitudinal resistance resembling that of the stripe phases.Comment: Nature Physics, (2011

    Melting of a 2D Quantum Electron Solid in High Magnetic Field

    Full text link
    The melting temperature (TmT_m) of a solid is generally determined by the pressure applied to it, or indirectly by its density (nn) through the equation of state. This remains true even for helium solids\cite{wilk:67}, where quantum effects often lead to unusual properties\cite{ekim:04}. In this letter we present experimental evidence to show that for a two dimensional (2D) solid formed by electrons in a semiconductor sample under a strong perpendicular magnetic field\cite{shay:97} (BB), the TmT_m is not controlled by nn, but effectively by the \textit{quantum correlation} between the electrons through the Landau level filling factor ν\nu=nh/eBnh/eB. Such melting behavior, different from that of all other known solids (including a classical 2D electron solid at zero magnetic field\cite{grim:79}), attests to the quantum nature of the magnetic field induced electron solid. Moreover, we found the TmT_m to increase with the strength of the sample-dependent disorder that pins the electron solid.Comment: Some typos corrected and 2 references added. Final version with minor editoriol revisions published in Nature Physic

    Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry

    Get PDF
    BACKGROUND: The new Ocular Dynamic Contour Tonometer (DCT), investigational device supplied by SMT (Swiss Microtechnology AG, Switzerland) allows simultaneous recording of intraocular pressure (IOP) and ocular pulse amplitude (OPA). It was the aim of this study to compare the IOP results of this new device with Goldmann tonometry. Furthermore, IOP and OPA measured with the new slitlamp-mounted DCT were compared to the IOP and OPA measured with the hand-held SmartLens(®), a gonioscopic contact lens tonometer (ODC Ophthalmic Development Company AG, Switzerland). METHODS: Nineteen healthy subjects were included in this study. IOP was determined by three consecutive measurements with each of the DCT, SmartLens(®), and Goldmann tonometer. Furthermore, OPA was measured three times consecutively by DCT and SmartLens(®). RESULTS: No difference (P = 0.09) was found between the IOP values by means of DCT (mean: 16.6 mm Hg, median: 15.33 mm Hg, SD: +/- 4.04 mm Hg) and Goldmann tonometry (mean: 16.17 mm Hg, median: 15.33 mm Hg, SD: +/- 4.03 mm Hg). The IOP values of SmartLens(® )(mean: 20.25 mm Hg, median: 19.00 mm Hg, SD: +/- 4.96 mm Hg) were significantly higher (P = 0.0008) both from Goldmann tonometry and DCT. The OPA values of the DCT (mean: 3.08 mm Hg, SD: +/- 0.92 mm Hg) were significantly lower (P = 0.0003) than those obtained by SmartLens(® )(mean: 3.92 mm Hg, SD: +/- 0.83 mm Hg). CONCLUSIONS: DCT was equivalent to Goldmann applanation tonometry in measurement of IOP in a small group of normal subjects. In contrast, SmartLens(® )(contact lens tonometry) gave IOP readings that were significantly higher compared with Goldmann applanation tonometer readings. Both devices, DCT and SmartLens(® )provide the measurement of OPA which could be helpful e.g. for the management of glaucoma

    The integrated care pathway reduced the number of hospital days by half: a prospective comparative study of patients with acute hip fracture

    Get PDF
    BACKGROUND: The incidence of hip fracture is expected to increase during the coming years, demanding greater resources and improved effectiveness on this group of patients. The aim of the present study was to evaluate the effectiveness of an integrated care pathway (ICP) in patients with an acute fracture of the hip. METHODS: A nonrandomized prospective study comparing a consecutive series of patients treated by the conventional pathway to a newer intervention. 112 independently living patients aged 65 years or older admitted to the hospital with a hip fracture were consecutively selected. Exclusion criteria were pathological fracture and severe cognitive impairment. An ICP was developed with the intention of creating a care path with rapid pre-operative attention, increased continuity and an accelerated training programme based on the individual patient's prerequisites and was used as a guidance for each patient's tailored care in the intervention group (N = 56) The main outcome measure was the length of hospital stay. Secondary outcomes were the amount of time from the emergency room to the ward, to surgery and to first ambulation, as well as in-hospital complications and 30-day readmission rate. RESULTS: The intervention group had a significantly shorter length of hospital stay (12.2 vs. 26.3 days; p < 0.000), a shorter time to first ambulation (41 vs. 49 h; p = 0.01), fewer pressure wounds (8 vs. 19; p = 0.02) and medical complications (5 vs. 14; p = 0.003) than the comparison group. No readmissions occurred within 30 days post-intervention in either group. CONCLUSION: Implementing an ICP for patients with a hip fracture was found to significantly reduce the length of hospital stay and improve the quality of care

    Evolutionary and pulsational properties of white dwarf stars

    Full text link
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Reversed-phase liquid chromatography coupled on-line to estrogen receptor bioaffinity detection based on fluorescence polarization

    Get PDF
    We describe the development and validation of a high-resolution screening (HRS) platform which couples gradient reversed-phase high-performance liquid chromatography (RP-HPLC) on-line to estrogen receptor α (ERα) affinity detection using fluorescence polarization (FP). FP, which allows detection at high wavelengths, limits the occurrence of interference from the autofluorescence of test compounds in the bioassay. A fluorescein-labeled estradiol derivative (E2-F) was synthesized and a binding assay was optimized in platereader format. After subsequent optimization in flow-injection analysis (FIA) mode, the optimized parameters were translated to the on-line HRS bioassay. Proof of principle was demonstrated by separating a mixture of five compounds known to be estrogenic (17β-estradiol, 17α-ethinylestradiol and the phytoestrogens coumestrol, coumarol and zearalenone), followed by post-column bioaffinity screening of the individual affinities for ERα. Using the HRS-based FP setup, we were able to screen affinities of off-line-generated metabolites of zearalenone for ERα. It is concluded that the on-line FP-based bioassay can be used to screen for the affinity of compounds without the disturbing occurrence of autofluorescence

    A glycoconjugate of Haemophilus influenzae Type b capsular polysaccharide with tetanus toxoid protein: hydrodynamic properties mainly influenced by the carbohydrate

    Get PDF
    Three important physical properties which may affect the performance of glycoconjugate vaccines against serious disease are molar mass (molecular weight), heterogeneity (polydispersity), and conformational flexibility in solution. The dilute solution behaviour of native and activated capsular polyribosylribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the corresponding glycoconjugate made by conjugating this with the tetanus toxoid (TT) protein have been characterized and compared using a combination of sedimentation equilibrium and sedimentation velocity in the analytical ultracentrifuge with viscometry. The weight average molar mass of the activated material was considerably reduced (Mw ~ 0.24 × 106 g.mol−1) compared to the native (Mw ~ 1.2 × 106 g.mol−1). Conjugation with the TT protein yielded large polydisperse structures (of Mw ~ 7.4 × 106 g.mol−1), but which retained the high degree of flexibility of the native and activated polysaccharide, with frictional ratio, intrinsic viscosity, sedimentation conformation zoning behaviour and persistence length all commensurate with highly flexible coil behaviour and unlike the previously characterised tetanus toxoid protein (slightly extended and hydrodynamically compact structure with an aspect ratio of ~3). This non-protein like behaviour clearly indicates that it is the carbohydrate component which mainly influences the physical behaviour of the glycoconjugate in solution
    corecore