16 research outputs found

    Whole genome sequencing identifies putative associations between genomic polymorphisms and clinical response to the antiepileptic drug levetiracetam

    Get PDF
    In the context of pharmacogenomics, whole genome sequencing provides a powerful approach for identifying correlations between response variability to specific drugs and genomic polymorphisms in a population, in an unbiased manner. In this study, we employed whole genome sequencing of DNA samples from patients showing extreme response (n=72) and non-response (n=27) to the antiepileptic drug levetiracetam, in order to identify genomic variants that underlie response to the drug. Although no common SNP (MAF>5%) crossed the conventional genome-wide significance threshold of 5e-8, we found common polymorphisms in genes SPNS3, HDC, MDGA2, NSG1 and RASGEF1C, which collectively predict clinical response to levetiracetam in our cohort with ~91% predictive accuracy. Among these genes, HDC, NSG1, MDGA2 and RASGEF1C are potentially implicated in synaptic neurotransmission, while SPNS3 is an atypical solute carrier transporter homologous to SV2A, the known molecular target of levetiracetam. Furthermore, we performed gene- and pathway-based statistical analysis on sets of rare and low-frequency variants (MAF<5%) and we identified associations between the following genes or pathways and response to levetiracetam: a) genes PRKCB and DLG2, which are involved in glutamatergic neurotransmission, a known target of anticonvulsants, including levetiracetam; b) genes FILIP1 and SEMA6D, which are involved in axon guidance and modelling of neural connections; and c) pathways with a role in synaptic neurotransmission, such as WNT5A-dependent internalization of FZD4 and disinhibition of SNARE formation. In summary, our approach to utilise whole genome sequencing on subjects with extreme response phenotypes is a feasible route to generate plausible hypotheses for investigating the genetic factors underlying drug response variability in cases of pharmaco-resistant epilepsy

    Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases

    Get PDF
    BACKGROUND: Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25–30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. METHODS: We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. RESULTS: Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. CONCLUSIONS: Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing

    Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation

    Full text link
    A substantial portion of the regulatory interactions in the higher eukaryotic cell are mediated by simple sequence motifs in the regulatory segments of genes and (pre-)mRNAs, and in the intrinsically disordered regions of proteins. Although these regulatory modules are physicochemically distinct, they share an evolutionary plasticity that has facilitated a rapid growth of their use and resulted in their ubiquity in complex organisms. The ease of motif acquisition simplifies access to basal housekeeping functions, facilitates the co-regulation of multiple biomolecules allowing them to respond in a coordinated manner to changes in the cell state, and supports the integration of multiple signals for combinatorial decision-making. Consequently, motifs are indispensable for temporal, spatial, conditional and basal regulation at the transcriptional, post-transcriptional and post-translational level. In this review, we highlight that many of the key regulatory pathways of the cell are recruited by motifs and that the ease of motif acquisition has resulted in large networks of co-regulated biomolecules. We discuss how co-operativity allows simple static motifs to perform the conditional regulation that underlies decision-making in higher eukaryotic biological systems. We observe that each gene and its products have a unique set of DNA, RNA or protein motifs that encode a regulatory program to define the logical circuitry that guides the life cycle of these biomolecules, from transcription to degradation. Finally, we contrast the regulatory properties of protein motifs and the regulatory elements of DNA and (pre-)mRNAs, advocating that co-regulation, co-operativity, and motif-driven regulatory programs are common mechanisms that emerge from the use of simple, evolutionarily plastic regulatory modules

    Identification of circulating genomic and metabolic biomarkers in intrahepatic cholangiocarcinoma

    No full text
    Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer arising from the bile ducts with a need for earlier diagnosis and a greater range of treatment options. KRAS/NRAS mutations are common in ICC tumours and 6–32% of patients also have isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) gene mutations associated with metabolic changes. This feasibility study investigated sequencing circulating tumour DNA (ctDNA) combined with metabolite profiling of plasma as a method for biomarker discovery in ICC patients. Plasma was collected from four ICC patients receiving radio-embolisation and healthy controls at multiple time points. ctDNA was sequenced using Ampliseq cancer hotspot panel-v2 on Ion Torrent PGM for single nucleotide variants (SNV) detection and with Illumina whole genome sequencing for copy number variants (CNV) and further targeted examination for SNVs. Untargeted analysis of metabolites from patient and control plasma was performed using liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-MS/MS). Metabolite identification was performed using multi-parameter comparisons with analysis of authentic standards, and univariate statistical analysis was performed to identify differences in metabolite abundance between patient and control samples. Recurrent somatic SNVs and CNVs were identified in ctDNA from three out of four patients that included both NRAS and IDH1 mutations linked to ICC. Plasma metabolite analysis revealed biomarker metabolites associated with ICC and in particular 2-hydroxyglutarate (2-HG) levels were elevated in both samples from the only patient showing a variant allele in IDH1. A reduction in the number of CNVs was observed with treatment. This study demonstrates that ctDNA and metabolite levels can be identified and correlated in ICC patient blood samples and differentiated from healthy controls. We conclude that combining genomic and metabolic analysis of plasma offers an effective approach to biomarker identification with potential for disease stratification and early detection studies

    Targeted next-generation sequencing of plasma DNA from cancer patients: factors influencing consistency with tumour DNA and prospective investigation of its utility for diagnosis

    No full text
    Use of circulating tumour DNA (ctDNA) as a liquid biopsy has been proposed for potential identification and monitoring of solid tumours. We investigate a next-generation sequencing approach for mutation detection in ctDNA in two related studies using a targeted panel. The first study was retrospective, using blood samples taken from melanoma patients at diverse timepoints before or after treatment, aiming to evaluate correlation between mutations identified in biopsy and ctDNA, and to acquire a first impression of influencing factors. We found good concordance between ctDNA and tumour mutations of melanoma patients when blood samples were collected within one year of biopsy or before treatment. In contrast, when ctDNA was sequenced after targeted treatment in melanoma, mutations were no longer found in 9 out of 10 patients, suggesting the method might be useful for detecting treatment response. Building on these findings, we focused the second study on ctDNA obtained before biopsy in lung patients, i.e. when a tentative diagnosis of lung cancer had been made, but no treatment had started. The main objective of this prospective study was to evaluate use of ctDNA in diagnosis, investigating the concordance of biopsy and ctDNA-derived mutation detection. Here we also found positive correlation between diagnostic lung biopsy results and pre-biopsy ctDNA sequencing, providing support for using ctDNA as a cost-effective, non-invasive solution when the tumour is inaccessible or when biopsy poses significant risk to the patient

    The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom

    No full text
    Purpose: The translation of genome sequencing into routine health care has been slow, partly because of concerns about affordability. The aspirational cost of sequencing a genome is 1000,butthereislittleevidencetosupportthisestimate.Weestimatethecostofusinggenomesequencinginroutineclinicalcareinpatientswithcancerorrarediseases.Methods:WeperformedamicrocostingstudyofIllumina−basedgenomesequencinginaUKNationalHealthServicelaboratoryprocessing399samples/year.Costdatawerecollectedforallstepsinthesequencingpathway,includingbioinformaticsanalysisandreportingofresults.Sensitivityanalysisidentifiedkeycostdrivers.Results:Genomesequencingcosts£6841percancercase(comprisingmatchedtumorandgermlinesamples)and£7050perrarediseasecase(threesamples).Theconsumablesusedduringsequencingarethemostexpensivecomponentoftesting(68–72Conclusion:Thecostofgenomesequencingisunderestimatedifonlysequencingcostsareconsidered,andlikelysurpasses1000, but there is little evidence to support this estimate. We estimate the cost of using genome sequencing in routine clinical care in patients with cancer or rare diseases. Methods: We performed a microcosting study of Illumina-based genome sequencing in a UK National Health Service laboratory processing 399 samples/year. Cost data were collected for all steps in the sequencing pathway, including bioinformatics analysis and reporting of results. Sensitivity analysis identified key cost drivers. Results: Genome sequencing costs £6841 per cancer case (comprising matched tumor and germline samples) and £7050 per rare disease case (three samples). The consumables used during sequencing are the most expensive component of testing (68–72% of the total cost). Equipment costs are higher for rare disease cases, whereas consumable and staff costs are slightly higher for cancer cases. Conclusion: The cost of genome sequencing is underestimated if only sequencing costs are considered, and likely surpasses 1000/genome in a single laboratory. This aspirational sequencing cost will likely only be achieved if consumable costs are considerably reduced and sequencing is performed at scale.</br

    The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom

    No full text
    Purpose: The translation of genome sequencing into routine health care has been slow, partly because of concerns about affordability. The aspirational cost of sequencing a genome is 1000,butthereislittleevidencetosupportthisestimate.Weestimatethecostofusinggenomesequencinginroutineclinicalcareinpatientswithcancerorrarediseases.Methods:WeperformedamicrocostingstudyofIllumina−basedgenomesequencinginaUKNationalHealthServicelaboratoryprocessing399samples/year.Costdatawerecollectedforallstepsinthesequencingpathway,includingbioinformaticsanalysisandreportingofresults.Sensitivityanalysisidentifiedkeycostdrivers.Results:Genomesequencingcosts£6841percancercase(comprisingmatchedtumorandgermlinesamples)and£7050perrarediseasecase(threesamples).Theconsumablesusedduringsequencingarethemostexpensivecomponentoftesting(68–72Conclusion:Thecostofgenomesequencingisunderestimatedifonlysequencingcostsareconsidered,andlikelysurpasses1000, but there is little evidence to support this estimate. We estimate the cost of using genome sequencing in routine clinical care in patients with cancer or rare diseases. Methods: We performed a microcosting study of Illumina-based genome sequencing in a UK National Health Service laboratory processing 399 samples/year. Cost data were collected for all steps in the sequencing pathway, including bioinformatics analysis and reporting of results. Sensitivity analysis identified key cost drivers. Results: Genome sequencing costs £6841 per cancer case (comprising matched tumor and germline samples) and £7050 per rare disease case (three samples). The consumables used during sequencing are the most expensive component of testing (68–72% of the total cost). Equipment costs are higher for rare disease cases, whereas consumable and staff costs are slightly higher for cancer cases. Conclusion: The cost of genome sequencing is underestimated if only sequencing costs are considered, and likely surpasses 1000/genome in a single laboratory. This aspirational sequencing cost will likely only be achieved if consumable costs are considerably reduced and sequencing is performed at scale.</br
    corecore