10 research outputs found

    Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood-brain barrier function in wild-type mice

    Get PDF
    Background: Emerging evidence suggests that disturbances in the blood–brain barrier (BBB) may be pivotal to the pathogenesis and pathology of vascular-based neurodegenerative disorders. Studies suggest that heightened systemic and central inflammations are associated with BBB dysfunction. This study investigated the effect of the anti-inflammatory nutraceuticals garlic extract-aged (GEA), alpha lipoic acid (ALA), niacin, and nicotinamide (NA) in a murine dietary-induced model of BBB dysfunction. Methods: C57BL/6 mice were fed a diet enriched in saturated fatty acids (SFA, 40% fat of total energy) for nine months to induce systemic inflammation and BBB disturbances. Nutraceutical treatment groups included the provision of either GEA, ALA, niacin or NA in the positive control SFA-group and in low-fat fed controls. Brain parenchymal extravasation of plasma derived immunoglobulin G (IgG) and large macromolecules (apolipoprotein (apo) B lipoproteins) measured by quantitative immunofluorescent microscopy, were used as markers of disturbed BBB integrity. Parenchymal glial fibrillar acidic protein (GFAP) and cyclooxygenase-2 (COX-2) were considered in the context of surrogate markers of neurovascular inflammation and oxidative stress. Total anti-oxidant status and glutathione reductase activity were determined in plasma.Results: Brain parenchymal abundance of IgG and apoB lipoproteins was markedly exaggerated in mice maintained on the SFA diet concomitant with significantly increased GFAP and COX-2, and reduced systemic antioxidative status. The nutraceutical GEA, ALA, niacin, and NA completely prevented the SFA-induced disturbances of BBB and normalized the measures of neurovascular inflammation and oxidative stress. Conclusions: The anti-inflammatory nutraceutical agents GEA, ALA, niacin, or NA are potent inhibitors of dietary fat-induced disturbances of BBB induced by systemic inflammations

    Probucol Suppresses Enterocytic Accumulation of Amyloid-β Induced by Saturated Fat and Cholesterol Feeding

    Get PDF
    Amyloid-β (Aβ) is secreted from lipogenic organs such as intestine and liver as an apolipoprotein of nascent triacylglycerol rich lipoproteins. Chronically elevated plasma Aβ may compromise cerebrovascular integrity and exacerbate amyloidosis—a hallmark feature of Alzheimer’s disease (AD). Probucol is a hypocholesterolemic agent that reduces amyloid burden in transgenic amyloid mice, but the mechanisms for this effect are presently unclear. In this study, the effect of Probucol on intestinal lipoprotein-Aβ homeostasis was explored. Wild-type mice were fed a control low-fat diet and enterocytic Aβ was stimulated by high-fat (HF) diet enriched in 10% (w/w) saturated fat and 1% (w/w) cholesterol for the duration of 1 month. Mice treated with Probucol had the drug incorporated into the chow at 1% (w/w). Quantitative immunofluorescence was utilised to determine intestinal apolipoprotein B (apo B) and Aβ abundance. We found apo B in both the perinuclear region of the enterocytes and the lacteals in all groups. However, HF feeding and Probucol treatment increased secretion of apo B into the lacteals without any change in net villi abundance. On the other hand, HF-induced enterocytic perinuclear Aβ was significantly attenuated by Probucol. No significant changes in Aβ were observed within the lacteals. The findings of this study support the notion that Probucol suppresses dietary fat induced stimulation of Aβ biosynthesis and attenuate availability of apo B lipoprotein-Aβ for secretion

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    The biological effects of the hypolipidaemic drug probucol microcapsules fed daily for 4 weeks, to an insulin-resistant mouse model: potential hypoglycaemic and anti-inflammatory effects

    No full text
    Probucol (PB) is an hypolipidaemic drug with potential antidiabetic effects. We showed recently using in vitro studies that when PB was incorporated with stabilising lipophilic bile acids and microencapsulated using the polymer sodium alginate, the microcapsules showed good stability but poor and irregular PB release. This suggests that PB microcapsules may exhibit better release profile and hence better absorption, if more hydrophilic bile acids were used, such as ursodeoxycholic acid (UDCA). Accordingly, this study aimed to produce PB-UDCA microcapsules and examine PB absorption and antidiabetic effects in our mouse-model of insulin-resistance and diabetes (fed high-fat diet; HFD). The study also aimed to examine the effects of the microcapsules on the bile acid profile. Healthy mice (fed low-fat diet; LFD) were used as control. Seventy mice were randomly allocated into seven equal groups: LFD, HFD given empty microcapsules, HFD given metformin (M), HFD given standard-dose probucol (PB-SD), HFD given high-dose probucol (PB-H), HFD given UDCA microcapsules and HFD given PB-UDCA microcapsules. Blood glucose (BG), inflammatory biomarkers (TNF-a, IFN-?, IL-1ß, IL-6, IL-10, IL-12 and IL-17), plasma cholesterol, non-esterified fatty acids and triglycerides were analysed together with plasma bile acid and probucol concentrations. PB-UDCA microcapsules reduced BG in HFD mice, but did not reduce inflammation or improve lipid profile, compared with positive control (HFD) group. Although PB-UDCA microcapsules did not exert hypolipidaemic or antiinflammatory effects, they resulted in significant hypoglycaemic effects in a mouse model of insulin resistance, which suggests potential applications in insulin-resistance and glucose haemostasis

    Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet

    No full text
    corecore