115 research outputs found

    Desynchronization of Diurnal Rhythms in Bipolar Disorder and Borderline Personality Disorder

    Get PDF
    It has long been proposed that diurnal rhythms are disturbed in bipolar disorder (BD). Such changes are obvious in episodes of mania or depression. However, detailed study of patients between episodes has been rare and comparison with other psychiatric disorders rarer still. Our hypothesis was that evidence for desynchronization of diurnal rhythms would be evident in BD and that we could test the specificity of any effect by studying borderline personality disorder (BPD). Individuals with BD (n = 36), BPD (n = 22) and healthy volunteers (HC, n = 25) wore a portable heart rate and actigraphy device and used a smart-phone to record self-assessed mood scores 10 times per day for 1 week. Average diurnal patterns of heart rate (HR), activity and sleep were compared within and across groups. Desynchronization in the phase of diurnal rhythms of HR compared with activity were found in BPD (+3 h) and BD (+1 h), but not in HC. A clear diurnal pattern for positive mood was found in all subject groups. The coherence between negative and irritable mood and HR showed a four-cycle per day component in BD and BPD, which was not present in HC. The findings highlight marked de-synchronisation of measured diurnal function in both BD but particularly BPD and suggest an increased association with negative and irritable mood at ultradian frequencies. These findings enhance our understanding of the underlying physiological changes associated with BPD and BD, and suggest objective markers for monitoring and potential treatment targets. Improved mood stabilisation is a translational objective for management of both patient groups

    Unexpected Course of Nonlinear Cardiac Interbeat Interval Dynamics during Childhood and Adolescence

    Get PDF
    The fluctuations of the cardiac interbeat series contain rich information because they reflect variations of other functions on different time scales (e.g., respiration or blood pressure control). Nonlinear measures such as complexity and fractal scaling properties derived from 24 h heart rate dynamics of healthy subjects vary from childhood to old age. In this study, the age-related variations during childhood and adolescence were addressed. In particular, the cardiac interbeat interval series was quantified with respect to complexity and fractal scaling properties. The R-R interval series of 409 healthy children and adolescents (age range: 1 to 22 years, 220 females) was analyzed with respect to complexity (Approximate Entropy, ApEn) and fractal scaling properties on three time scales: long-term (slope β of the power spectrum, log power vs. log frequency, in the frequency range 10−4 to 10−2 Hz) intermediate-term (DFA, detrended fluctuation analysis, α2) and short-term (DFA α1). Unexpectedly, during age 7 to 13 years β and ApEn were higher compared to the age <7 years and age >13 years (β: −1.06 vs. −1.21; ApEn: 0.88 vs. 0.74). Hence, the heart rate dynamics were closer to a 1/f power law and most complex between 7 and 13 years. However, DFA α1 and α2 increased with progressing age similar to measures reflecting linear properties. In conclusion, the course of long-term fractal scaling properties and complexity of heart rate dynamics during childhood and adolescence indicates that these measures reflect complex changes possibly linked to hormonal changes during pre-puberty and puberty

    Post-Weaning Protein Malnutrition Increases Blood Pressure and Induces Endothelial Dysfunctions in Rats

    Get PDF
    Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10−10–3.10−4 M) was similar in both groups. Endothelium removal or L-NAME (10−4 M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001–300 µg) and the relaxation to acetylcholine (10−10–10−3 M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model

    Variability in phase and amplitude of diurnal rhythms is related to variation of mood in bipolar and borderline personality disorder

    Get PDF
    Abstract Variable mood is an important feature of psychiatric disorders. However, its measurement and relationship to objective measureas of physiology and behaviour have rarely been studied. Smart-phones facilitate continuous personalized prospective monitoring of subjective experience and behavioural and physiological signals can be measured through wearable devices. Such passive data streams allow novel estimates of diurnal variability. Phase and amplitude of diurnal rhythms were quantified using new techniques that fitted sinusoids to heart rate (HR) and acceleration signals. We investigated mood and diurnal variation for four days in 20 outpatients with bipolar disorder (BD), 14 with borderline personality disorder (BPD) and 20 healthy controls (HC) using a smart-phone app, portable electrocardiogram (ECG), and actigraphy. Variability in negative affect, positive affect, and irritability was elevated in patient groups compared with HC. The study demonstrated convincing associations between variability in subjective mood and objective variability in diurnal physiology. For BPD there was a pattern of positive correlations between mood variability and variation in activity, sleep and HR. The findings suggest BPD is linked more than currently believed with a disorder of diurnal rhythm; in both BPD and BD reducing the variability of sleep phase may be a way to reduce variability of subjective mood
    corecore