1,192 research outputs found

    Autoimmune diseases and new-onset atrial fibrillation:a UK Biobank study

    Get PDF
    AimsThe underlying mechanisms of atrial fibrillation (AF) are largely unknown. Inflammation may underlie atrial remodelling. Autoimmune diseases, related to increased systemic inflammation, may therefore be associated with new-onset AF.Methods and resultsParticipants from the population-based UK Biobank were screened for rheumatic fever, gastrointestinal autoimmune diseases, autoimmune diseases targeting the musculoskeletal system and connective tissues, and neurological autoimmune diseases. Between 2006 and 2022, participants were followed for incident AF. Cox proportional hazards regression analyses were performed to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) to quantify associations. 494 072 participants free from AF were included (median age 58.0 years, 54.8% women). After a median of 12.8 years, 27 194 (5.5%) participants were diagnosed with new-onset AF. Rheumatic fever without heart involvement (HR, 95% CI: 1.47, 1.26–1.72), Crohn’s disease (1.23, 1.05–1.45), ulcerative colitis (1.17, 1.06–1.31), rheumatoid arthritis (1.39, 1.28–1.51), polyarteritis nodosa (1.82, 1.04–3.09), systemic lupus erythematosus (1.82, 1.41–2.35), and systemic sclerosis (2.32, 1.57–3.44) were associated with a larger AF risk. In sex-stratified analyses, rheumatic fever without heart involvement, multiple sclerosis, Crohn’s disease, seropositive rheumatoid arthritis, psoriatic and enteropathic arthropathies, systemic sclerosis and ankylosing spondylitis were associated with larger AF risk in women, whereas only men showed a larger AF risk associated with ulcerative colitis.ConclusionsVarious autoimmune diseases are associated with new-onset AF, more distinct in women. Our findings elaborate on the pathophysiological differences in autoimmunity and AF risk between men and women

    Increased functional sensorimotor network efficiency relates to disability in multiple sclerosis

    Get PDF
    BACKGROUND: Network abnormalities could help explain physical disability in multiple sclerosis (MS), which remains poorly understood. OBJECTIVE: This study investigates functional network efficiency changes in the sensorimotor system. METHODS: We included 222 MS patients, divided into low disability (LD, Expanded Disability Status Scale (EDSS) ⩽3.5, n = 185) and high disability (HD, EDSS ⩾6, n = 37), and 82 healthy controls (HC). Functional connectivity was assessed between 23 sensorimotor regions. Measures of efficiency were computed and compared between groups using general linear models corrected for age and sex. Binary logistic regression models related disability status to local functional network efficiency (LE), brain volumes and demographics. Functional connectivity patterns of regions important for disability were explored. RESULTS: HD patients demonstrated significantly higher LE of the left primary somatosensory cortex (S1) and right pallidum compared to LD and HC, and left premotor cortex compared to HC only. The logistic regression model for disability (R2 = 0.38) included age, deep grey matter volume and left S1 LE. S1 functional connectivity was increased with prefrontal and secondary sensory areas in HD patients, compared to LD and HC. CONCLUSION: Clinical disability in MS associates with functional sensorimotor increases in efficiency and connectivity, centred around S1, independent of structural damage

    Disability in multiple sclerosis is related to thalamic connectivity and cortical network atrophy.

    Get PDF
    BACKGROUND: Thalamic atrophy is proposed to be a major predictor of disability progression in multiple sclerosis (MS), while thalamic function remains understudied. OBJECTIVES: To study how thalamic functional connectivity (FC) is related to disability and thalamic or cortical network atrophy in two large MS cohorts. METHODS: Structural and resting-state functional magnetic resonance imaging (fMRI) was obtained in 673 subjects from Amsterdam (MS: N = 332, healthy controls (HC): N = 96) and Graz (MS: N = 180, HC: N = 65) with comparable protocols, including disability measurements in MS (Expanded Disability Status Scale, EDSS). Atrophy was measured for the thalamus and seven well-recognized resting-state networks. Static and dynamic thalamic FC with these networks was correlated with disability. Significant correlates were included in a backward multivariate regression model. RESULTS: Disability was most strongly related (adjusted R2 = 0.57, p < 0.001) to higher age, a progressive phenotype, thalamic atrophy and increased static thalamic FC with the sensorimotor network (SMN). Static thalamus-SMN FC was significantly higher in patients with high disability (EDSS ⩾ 4) and related to network atrophy but not thalamic atrophy or lesion volumes. CONCLUSION: The severity of disability in MS was related to increased static thalamic FC with the SMN. Thalamic FC changes were only related to cortical network atrophy, but not to thalamic atrophy

    Longitudinal Network Changes and Conversion to Cognitive Impairment in Multiple Sclerosis

    Get PDF
    OBJECTIVE: To characterize functional network changes related to conversion to cognitive impairment in a large sample of MS patients over a period of 5 years. METHODS: 227 MS patients and 59 healthy controls (HCs) of the Amsterdam MS cohort underwent neuropsychological testing and resting-state fMRI at two time points (time-interval 4.9±0.9 years). At both baseline and follow-up, patients were categorized as cognitively preserved (CP, N=123), mildly impaired (MCI, Z<-1.5 on ≥2 cognitive tests, N=32) or impaired (CI, Z<-2 on ≥2 tests, N=72) and longitudinal conversion between groups was determined. Network function was quantified using eigenvector centrality, a measure of regional network importance, which was computed for individual resting-state networks at both time-points. RESULTS: Over time, 18.9% of patients converted to a worse phenotype; 22/123 CP patients (17.9%) converted from CP to MCI, 10/123 from CP to CI (8.1%) and 12/32 MCI patients converted to CI (37.5%). At baseline, DMN centrality was higher in CI compared to controls (P=.05). Longitudinally, ventral attention network (VAN) importance increased in CP, driven by stable CP and CP-to-MCI converters (P<.05). CONCLUSIONS: Of all patients, 19% worsened in their cognitive status over five years. Conversion from intact cognition to impairment is related to an initial disturbed functioning of the VAN, then shifting towards DMN dysfunction in CI. As the VAN normally relays information to the DMN, these results could indicate that in MS, normal processes crucial for maintaining overall network stability are progressively disrupted as patients clinically progress

    Predicting clinical progression in multiple sclerosis after 6 and 12 years

    Get PDF
    OBJECTIVES: To predict disability and cognition in multiple sclerosis (MS) after 6 and 12 years, using early clinical and imaging measures. METHODS: In total 115 MS patients were selected and followed-up after 2 and 6 years, 79 patients also after 12 years. Disability was measured using the expanded disability status scale (EDSS); cognition only at follow-up using neuropsychological testing. Predictors-of-interest included EDSS, baseline brain and lesion volumes and their changes over 2 years, baseline age, clinical phenotype, sex and educational level. RESULTS: Higher 6-year EDSS was predicted by early EDSS- and whole-brain volume changes and baseline diagnosis of primary progressive MS (PPMS) (adjusted R2 =0.56). Predictors for 12-year EDSS included higher EDSS changes and higher T1-hypointense lesion volumes (adjusted R2 =0.38). Year 6 cognition was predicted by PPMS phenotype, lower educational level, male sex, and early whole-brain atrophy (adjusted R2 =0.26); year 12 predictors included male sex, lower educational level and higher baseline T1-hypointense lesion volumes (adjusted R2 =0.14). CONCLUSIONS: Patients with early signs of neurodegeneration and a progressive disease onset are more prone to develop both disability progression and cognitive dysfunction. Male sex and lower educational level only affected cognitive dysfunction, which remains difficult to predict and likely needs more advanced imaging measures. This article is protected by copyright. All rights reserved

    Adaptation to altered balance conditions in unilateral amputees due to atherosclerosis: a randomized controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amputation impairs the ability to balance. We examined adaptation strategies in balance following dysvascularity-induced unilateral tibial amputation in skilled prosthetic users (SPU) and first fitted amputees (FFA) (N = 28).</p> <p>Methods</p> <p>Excursions of center of pressure (COP) were determined during 20 s quiet standing using a stabilometry system with eyes-open on both legs or on the non-affected leg(s). Main measures: COP trajectories and time functions; distribution of reaction forces between the two legs; inclination angles obtained through second order regression analysis using stabilogram data.</p> <p>Results</p> <p>FFA vs SPU demonstrated 27.8% greater postural sway in bilateral stance (p = 0.0004). Postural sway area was smaller in FFA standing on the non-affected leg compared with SPU (p = 0.028). The slope of the regression line indicating postural stability was nearly identical in FFA and SPU and the direction of regression line was opposite for the left and right leg amputees.</p> <p>Conclusion</p> <p>Of the two adaptation strategies in balance, the first appears before amputation due to pain and fatigue in the affected leg. This strategy appears in the form of reduced postural sway while standing on the non-affected leg. The second adaptation occurs during rehabilitation and regular use of the prosthesis resulting in normal weightbearing associated with reduced postural sway on two legs and return to the normal postural stability on one leg.</p
    corecore