139 research outputs found

    Complement and the Alternative Pathway Play an Important Role in LPS/D-GalN-Induced Fulminant Hepatic Failure

    Get PDF
    Fulminant hepatic failure (FHF) is a clinically severe type of liver injury with an extremely high mortality rate. Although the pathological mechanisms of FHF are not well understood, evidence suggests that the complement system is involved in the pathogenesis of a variety of liver disorders. In the present study, to investigate the role of complement in FHF, we examined groups of mice following intraperitoneal injection of LPS/D-GalN: wild-type C57BL/6 mice, wild-type mice treated with a C3aR antagonist, C5aR monoclonal antibody (C5aRmAb) or CR2-Factor H (CR2-fH, an inhibitor of the alternative pathway), and C3 deficient mice (C3−/− mice). The animals were euthanized and samples analyzed at specific times after LPS/D-GalN injection. The results show that intraperitoneal administration of LPS/D-GalN activated the complement pathway, as evidenced by the hepatic deposition of C3 and C5b-9 and elevated serum levels of the complement activation product C3a, the level of which was associated with the severity of the liver damage. C3a receptor (C3aR) and C5a receptor (C5aR) expression was also upregulated. Compared with wild-type mice, C3−/− mice survived significantly longer and displayed reduced liver inflammation and attenuated pathological damage following LPS/D-GalN injection. Similar levels of protection were seen in mice treated with C3aR antagonist,C5aRmAb or CR2-fH. These data indicate an important role for the C3a and C5a generated by the alternative pathway in LPS/D-GalN-induced FHF. The data further suggest that complement inhibition may be an effective strategy for the adjunctive treatment of fulminant hepatic failure

    Refractory periods and climate forcing in cholera dynamics

    Full text link
    Outbreaks of many infectious diseases, including cholera, malaria and dengue, vary over characteristic periods longer than 1 year(1,2). Evidence that climate variability drives these interannual cycles has been highly controversial, chiefly because it is difficult to isolate the contribution of environmental forcing while taking into account nonlinear epidemiological dynamics generated by mechanisms such as host immunity(2-4). Here we show that a critical interplay of environmental forcing, specifically climate variability, and temporary immunity explains the interannual disease cycles present in a four-decade cholera time series from Matlab, Bangladesh. We reconstruct the transmission rate, the key epidemiological parameter affected by extrinsic forcing, over time for the predominant strain ( El Tor) with a nonlinear population model that permits a contributing effect of intrinsic immunity. Transmission shows clear interannual variability with a strong correspondence to climate patterns at long periods ( over 7 years, for monsoon rains and Brahmaputra river discharge) and at shorter periods ( under 7 years, for flood extent in Bangladesh, sea surface temperatures in the Bay of Bengal and the El Nino Southern Oscillation). The importance of the interplay between extrinsic and intrinsic factors in determining disease dynamics is illustrated during refractory periods, when population susceptibility levels are low as the result of immunity and the size of cholera outbreaks only weakly reflects climate forcing.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62876/1/nature03820.pd

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    Inferring transient dynamics of human populations from matrix non-normality

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.In our increasingly unstable and unpredictable world, population dynamics rarely settle uniformly to long-term behaviour. However, projecting period-by-period through the preceding fluctuations is more data-intensive and analytically involved than evaluating at equilibrium. To efficiently model populations and best inform policy, we require pragmatic suggestions as to when it is necessary to incorporate short-term transient dynamics and their effect on eventual projected population size. To estimate this need for matrix population modelling, we adopt a linear algebraic quantity known as non-normality. Matrix non-normality is distinct from normality in the Gaussian sense, and indicates the amplificatory potential of the population projection matrix given a particular population vector. In this paper, we compare and contrast three well-regarded metrics of non-normality, which were calculated for over 1000 age-structured human population projection matrices from 42 European countries in the period 1960 to 2014. Non-normality increased over time, mirroring the indices of transient dynamics that peaked around the millennium. By standardising the matrices to focus on transient dynamics and not changes in the asymptotic growth rate, we show that the damping ratio is an uninformative predictor of whether a population is prone to transient booms or busts in its size. These analyses suggest that population ecology approaches to inferring transient dynamics have too often relied on suboptimal analytical tools focussed on an initial population vector rather than the capacity of the life cycle to amplify or dampen transient fluctuations. Finally, we introduce the engineering technique of pseudospectra analysis to population ecology, which, like matrix non-normality, provides a more complete description of the transient fluctuations than the damping ratio. Pseudospectra analysis could further support non-normality assessment to enable a greater understanding of when we might expect transient phases to impact eventual population dynamics.This work was funded by Wellcome Trust New Investigator 103780 to TE, who is also funded by NERC Fellowship NE/J018163/1. JB gratefully acknowledges the ESRC Centre for Population Change ES/K007394/1

    Ultrasound-Mediated DNA Transformation in Thermophilic Gram-Positive Anaerobes

    Get PDF
    Thermophilic, Gram-positive, anaerobic bacteria (TGPAs) are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes. transformants/µg of methylated DNA. Delivery into X514 cells was confirmed via detecting the kanamycin-resistance gene for pIKM2, while confirmation of pHL015 was detected by visualization of fluorescence signals of secondary host-cells following a plasmid-rescue experiment. Furthermore, the foreign β-1,4-glucanase gene was functionally expressed in X514, converting the host into a prototypic thermophilic consolidated bioprocessing organism that is not only ethanologenic but cellulolytic.In this study, we developed an ultrasound-based sonoporation method in TGPAs. This new DNA-delivery method could significantly improve the throughput in developing genetic systems for TGPAs, many of which are of industrial interest yet remain difficult to manipulate genetically

    Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy

    Get PDF
    Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare X-linked recessive disease caused by deficiency of the lysosomal enzyme iduronate-2-sulphatase, leading to progressive accumulation of glycosaminoglycans in nearly all cell types, tissues and organs. Clinical manifestations include severe airway obstruction, skeletal deformities, cardiomyopathy and, in most patients, neurological decline. Death usually occurs in the second decade of life, although some patients with less severe disease have survived into their fifth or sixth decade. Until recently, there has been no effective therapy for MPS II, and care has been palliative. Enzyme replacement therapy (ERT) with recombinant human iduronate-2-sulphatase (idursulfase), however, has now been introduced. Weekly intravenous infusions of idursulfase have been shown to improve many of the signs and symptoms and overall wellbeing in patients with MPS II. This paper provides an overview of the clinical manifestations, diagnosis and symptomatic management of patients with MPS II and provides recommendations for the use of ERT. The issue of treating very young patients and those with CNS involvement is also discussed. ERT with idursulfase has the potential to benefit many patients with MPS II, especially if started early in the course of the disease

    Hypoxia and TGF-β Drive Breast Cancer Bone Metastases through Parallel Signaling Pathways in Tumor Cells and the Bone Microenvironment

    Get PDF
    BACKGROUND: Most patients with advanced breast cancer develop bone metastases, which cause pain, hypercalcemia, fractures, nerve compression and paralysis. Chemotherapy causes further bone loss, and bone-specific treatments are only palliative. Multiple tumor-secreted factors act on the bone microenvironment to drive a feed-forward cycle of tumor growth. Effective treatment requires inhibiting upstream regulators of groups of prometastatic factors. Two central regulators are hypoxia and transforming growth factor (TGF)- beta. We asked whether hypoxia (via HIF-1alpha) and TGF-beta signaling promote bone metastases independently or synergistically, and we tested molecular versus pharmacological inhibition strategies in an animal model. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed interactions between HIF-1alpha and TGF-beta pathways in MDA-MB-231 breast cancer cells. Only vascular endothelial growth factor (VEGF) and the CXC chemokine receptor 4 (CXCR4), of 16 genes tested, were additively increased by both TGF-beta and hypoxia, with effects on the proximal promoters. We inhibited HIF-1alpha and TGF-beta pathways in tumor cells by shRNA and dominant negative receptor approaches. Inhibition of either pathway decreased bone metastasis, with no further effect of double blockade. We tested pharmacologic inhibitors of the pathways, which target both the tumor and the bone microenvironment. Unlike molecular blockade, combined drug treatment decreased bone metastases more than either alone, with effects on bone to decrease osteoclastic bone resorption and increase osteoblast activity, in addition to actions on tumor cells. CONCLUSIONS/SIGNIFICANCE: Hypoxia and TGF-beta signaling in parallel drive tumor bone metastases and regulate a common set of tumor genes. In contrast, small molecule inhibitors, by acting on both tumor cells and the bone microenvironment, additively decrease tumor burden, while improving skeletal quality. Our studies suggest that inhibitors of HIF-1alpha and TGF-beta may improve treatment of bone metastases and increase survival

    Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery

    Get PDF
    Abstract. BACKGROUND: Many (artificial) bone substitute materials are currently available for use in orthopaedic trauma surgery. Objective data on their biological and biomechanical characteristics, which determine their clinical application, is mostly lacking. The aim of this study was to investigate structural and in vitro mechanical properties of nine bone substitute cements registered for use in orthopaedic trauma surgery in the Netherlands. METHODS: Seven calcium phosphate cements (BoneSource®, Calcibon®, ChronOS®, Eurobone®, HydroSet™, Norian SRS®, and Ostim®), one calcium sulphate cement (MIIG® X3), and one bioactive glass cement (Cortoss®) were tested. Structural characteristics were measured by micro-CT scanning. Compression strength and stiffness were determined following unconfined compression tests. RESULTS: Each bone substitute had unique characteristics. Mean total porosity ranged from 53% (Ostim®) to 0.5% (Norian SRS®). Mean pore size exceeded 100 μm only in Eurobone® and Cortoss® (162.2 ± 107.1 μm and 148.4 ± 70.6 μm, respectively). However, 230 μm pores were found in Calcibon®, Norian SRS®, HydroSet™, and MIIG® X3. Connectivity density ranged from 27/cm3 for HydroSet™ to 0.03/cm3 for Calcibon®. The ultimate compression strength was highest in Cortoss® (47.32 MPa) and lowest in Ostim® (0.24 MPa). Young's Modulus was highest in Calcibon® (790 MPa) and lowest in Ostim® (6 MPa). CONCLUSIONS: The bone substitutes tested display a wide range in structural properties and compression strength, indicating that they will be suitable for different clinical indications. The data outlined here will help surgeons to select the most suitable products currently available for specific clinical indications

    The Genetic Signatures of Noncoding RNAs

    Get PDF
    The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non–protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses
    corecore