39 research outputs found

    Quantitative Analysis of Peripheral Tissue Perfusion Using Spatiotemporal Molecular Dynamics

    Get PDF
    Background: Accurate measurement of peripheral tissue perfusion is challenging but necessary to diagnose peripheral vascular insufficiency. Because near infrared (NIR) radiation can penetrate relatively deep into tissue, significant attention has been given to intravital NIR fluorescence imaging. Methodology/Principal Findings: We developed a new optical imaging-based strategy for quantitative measurement of peripheral tissue perfusion by time-series analysis of local pharmacokinetics of the NIR fluorophore, indocyanine green (ICG). Time-series NIR fluorescence images were obtained after injecting ICG intravenously in a murine hindlimb ischemia model. Mathematical modeling and computational simulations were used for translating time-series ICG images into quantitative pixel perfusion rates and a perfusion map. We could successfully predict the prognosis of ischemic hindlimbs based on the perfusion profiles obtained immediately after surgery, which were dependent on the preexisting collaterals. This method also reflected increases in perfusion and improvements in prognosis of ischemic hindlimbs induced by treatment with vascular endothelial growth factor and COMP-angiopoietin-1. Conclusions/Significance: We propose that this novel NIR-imaging-based strategy is a powerful tool for biomedical studies related to the evaluation of therapeutic interventions directed at stimulating angiogenesis

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
    corecore