7 research outputs found

    An Alternative Method for Solving a Certain Class of Fractional Kinetic Equations

    Full text link
    An alternative method for solving the fractional kinetic equations solved earlier by Haubold and Mathai (2000) and Saxena et al. (2002, 2004a, 2004b) is recently given by Saxena and Kalla (2007). This method can also be applied in solving more general fractional kinetic equations than the ones solved by the aforesaid authors. In view of the usefulness and importance of the kinetic equation in certain physical problems governing reaction-diffusion in complex systems and anomalous diffusion, the authors present an alternative simple method for deriving the solution of the generalized forms of the fractional kinetic equations solved by the aforesaid authors and Nonnenmacher and Metzler (1995). The method depends on the use of the Riemann-Liouville fractional calculus operators. It has been shown by the application of Riemann-Liouville fractional integral operator and its interesting properties, that the solution of the given fractional kinetic equation can be obtained in a straight-forward manner. This method does not make use of the Laplace transform.Comment: 7 pages, LaTe

    Numerical Methods for the Fractional Differential Equations of Viscoelasticity

    No full text
    Mathematical models based on differential operators of fractional order have proven to be very useful for describing the properties of viscoelastic materials. However, the associated differential equations can usually not be solved analytically. In this article, we provide a survey of the most important numerical methods. We restrict our attention to those types of fractional differential equations that are most important in the context of viscoelasticity, i.e., we discuss numerical methods for ordinary fractional differential equations and for certain types of time-fractional partial differential equations. Space-fractional partial differential equations are not discussed
    corecore