
Chu et al. Journal of Inequalities and Applications  (2016) 2016:282 
DOI 10.1186/s13660-016-1222-x

R E S E A R C H Open Access

Lp and BMO bounds for weighted Hardy
operators on the Heisenberg group
Jie Ying Chu1,2, Zun Wei Fu2 and Qing Yan Wu2*

*Correspondence:
wuqingyan@lyu.edu.cn
2Department of Mathematics, Linyi
University, Linyi, Shandong 276005,
P.R. China
Full list of author information is
available at the end of the article

Abstract
In the setting of the Heisenberg groupH

n, we characterize those nonnegative
functions w defined on [0, 1] for which the weighted Hardy operator Hw is bounded
on Lp(Hn), 1 ≤ p ≤ ∞, and on BMO(Hn). Meanwhile, the corresponding operator
norm in each case is derived. Furthermore, we introduce a type of weighted
multilinear Hardy operators and obtain the characterizations of their weights for
which the weighted multilinear Hardy operators are bounded on the product of
Lebesgue spaces in terms of Heisenberg group. In addition, the corresponding norms
are worked out.
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1 Introduction
The history of weighted Hardy operators can be traced back to the end of the th century
when Hadamard [] used the idea of fractional differentiation of an analytic function via
differentiation of its Taylor series. Corresponding to fractional differentiation, we note that
Hadamard dealt with fractional integration in the form of

Jαf (x) =
xα

�(α)

∫ 


( – ξ )α–f (xξ ) dξ ,

which led him further to consider generalized fractional integrals of the form

∫ 


g(xξ )v(ξ ) dξ . (.)

Notice that, if g(xξ ) = xα

�(α) f (xξ ), v(ξ ) = ( – ξ )α–, then (.) reduces to Jαf (x). How-
ever, Hadamard considered the case v(ξ ) = 

�(α) (– ln ξ )α–, he did not develop this idea.
Many years later a substantial theory of generalized integration (.) was created by
Dzherbashyan in [] and []. It is clear that in R

 if v(ξ ) ≡ , then (.) is precisely reduced
to the classical Hardy operator H defined by

Hf (x) =

x

∫ x


f (t) dt, x �= ,
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which is one of the fundamental integral averaging operator in real analysis. In ,
Carton-Lebrun and Fosset [] defined the weighted Hardy operators Hψ as follows. Let
ψ : [, ] → [,∞) be a function. If f is a measurable complex-valued function on R

n,
then

Hψ f (x) :=
∫ 


f (tx)ψ(t) dt, x ∈R

n.

Sometimes Hψ is called the generalized Hardy operator []. Xiao [] gave the characteriza-
tion of ψ for which Hψ is bounded on either Lp(Rn),  ≤ p ≤ ∞, or BMO(Rn). Meanwhile,
the corresponding operator norms were worked out. Rim and Lee [] obtained the similar
results on a p-adic field. For other results of the weighted Hardy operators on the Eu-
clidean space one can refer to [] and references therein. As we know, the weighted Hardy
operators are closely related to Hausdorff operators; see []. In this paper, we will consider
the weighted Hardy operators on the Heisenberg group.

The Heisenberg group H
n is the Lie group with underlying manifold R

n × R, whose
group law is given by

(x, x, . . . , xn, xn+)
(
x′

, x′
, . . . , x′

n, x′
n+

)

=

(
x + x′

, x + x′
, . . . , xn + x′

n, xn+ + x′
n+ + 

n∑
j=

(
x′

jxn+j – xjx′
n+j

))
.

This multiplication is non-commutative. By the definition, we can see that the identity
element on H

n is  ∈R
n+, while the reverse element of x is –x. The vector fields

Xj =
∂

∂xj
+ xn+j

∂

∂xn+
, j = , . . . , n,

Xn+j =
∂

∂xn+j
– xj

∂

∂xn+
, j = , . . . , n,

Xn+ =
∂

∂xn+
,

form a natural basis for the Lie algebra of left-invariant vector fields. The only non-trivial
commutator relations between those fields are

[Xj, Xn+j] = –Xn+, j = , . . . , n.

The Heisenberg group H
n is a homogeneous group with dilations

δr(x, x, . . . , xn, xn+) :=
(
rx, rx, . . . , rxn, rxn+

)
, r > .

The homogeneous norm is defined by

|x|h =

[( n∑
i=

x
i

)

+ x
n+

] 


,
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where x = (x, x, . . . , xn, xn+). From this one also can derive the distance function

d(p, q) := d
(
q–p, 

)
=

∣∣q–p
∣∣
h.

This distance d is left-invariant in the sense that d(p, q) remains unchanged when p and q
are both left-translated by some fixed vector on H

n. Furthermore, d satisfies the triangular
inequality (p. in [])

d(p, q) ≤ d(p, x) + d(x, q), p, x, q ∈H
n.

For r >  and x ∈ H
n, the ball and sphere with center x and radius r on H

n are given by

B(x, r) =
{

y ∈ H
n : d(x, y) < r

}

and

S(x, r) =
{

y ∈H
n : d(x, y) = r

}
,

respectively.
The Haar measure on H

n coincides with the Lebesgue measure on R
n ×R. We denote

by |E| the measure of any measurable set E ⊂H
n. Then

∣∣δr(E)
∣∣ = rQ|E|, d(δrx) = rQ dx,

where Q = n +  is called the homogeneous dimension of Hn. We have

∣∣B(x, r)
∣∣ =

∣∣B(, r)
∣∣ = �QrQ,

where

�Q =
πn+ 

 �( n
 )

(n + )�(n)�( n+
 )

,

is the volume of the unit ball B(, ) on H
n. The area of S(, ) on H

n is ωQ = Q�Q; see [].
For more details as regards the Heisenberg group one can refer to [].

Definition . Let w : [, ] → [,∞) be a function, for a measurable function f on H
n.

We define the weighted Hardy operators Hw on H
n as

Hwf (x) :=
∫ 


f (δtx)w(t) dt.

Recall that the space BMO(Hn) is defined to be the space of all locally integrable func-
tions f on H

n such that

‖f ‖BMO(Hn) := sup
B⊂Hn


|B|

∫
B

∣∣f (x) – fB
∣∣dx < ∞,

where the supremum is taken over all balls in H
n and fB = 

|B|
∫

B f (x) dx.



Chu et al. Journal of Inequalities and Applications  (2016) 2016:282 Page 4 of 12

In Section , we will characterize the nonnegative functions ω defined on [, ] for which
the weighted Hardy operator Hw is bounded on Lp(Hn),  ≤ p ≤ ∞, and on BMO(Hn).
Meanwhile, the corresponding operator norm in each case will be obtained. In Section ,
we will introduce a type of weighted multilinear Hardy operators and investigate the char-
acterizations of their weights for which the weighted multilinear Hardy operators are
bounded on the product of Lebesgue spaces in terms of Heisenberg group. In addition,
the corresponding norms will be worked out. We will give an extension of [] and [] to
the setting of the Heisenberg group H

n since it is a non-commutative nilpotent Lie group
with the underlying manifold R

n ×R, in which geometric motions are different from the
Euclidean space R

n due to the loss of interchangeability. A new special function for the
sufficient part of BMO bounds will be constructed.

2 Bounds for weighted Hardy operators on H
n

Theorem . Let w : [, ] → (,∞) be a function and let  ≤ p ≤ ∞. Then Hw is bounded
on Lp(Hn) if and only if

∫ 


t– Q

p w(t) dt < ∞. (.)

Moreover, if (.) holds, then

‖Hw‖Lp(Hn)→Lp(Hn) =
∫ 


t– Q

p w(t) dt.

Proof Since the case p = ∞ is trivial, it suffices to consider  ≤ p < ∞. Suppose (.) holds.
By Minkowski’s inequality, we have

‖Hwf ‖Lp(Hn) =
(∫

Hn

∣∣∣∣
∫ 


f (δtx)w(t) dt

∣∣∣∣
p

dx
) 

p

≤
∫ 



(∫
Hn

∣∣f (δtx)
∣∣p dx

) 
p

w(t) dt

=
∫ 



(∫
Hn

∣∣f (y)
∣∣p dy

) 
p

t– Q
p w(t) dt

= ‖f ‖Lp(Hn)

∫ 


t– Q

p w(t) dt. (.)

Therefore, Hw is bounded from Lp(Hn) to Lp(Hn).
Conversely, suppose  ≤ p < ∞ and Hw is bounded on Lp(Hn). Then

C := ‖Hw‖Lp(Hn)→Lp(Hn) < ∞,

and for f ∈ Lp(Hn),

‖Hwf ‖Lp(Hn) ≤ C‖f ‖Lp(Hn). (.)

Now, for any ε > , take

fε =

⎧⎨
⎩

, |x|h ≤ ,

|x|–
Q
p –ε

h , |x|h > .
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Then ‖fε‖p
Lp(Hn) = ωQ

εp , and

Hwfε(x) =

⎧⎨
⎩

, |x|h ≤ ,

|x|–
Q
p –ε

h
∫ 
|x|–

h
t– Q

p –εw(t) dt, |x|h > .

Putting  < ε < , then by (.), we can see that

Cp‖fε‖p
Lp(Hn) ≥ ‖Hwfε‖p

Lp(Hn) =
∫

|x|h>

(
|x|–

Q
p –ε

h

∫ 

|x|–
h

t– Q
p –εw(t) dt

)p

dx

≥
∫

|x|h> 
ε

(
|x|–

Q
p –ε

h

∫ 

ε

t– Q
p –εw(t) dt

)p

dx

=
(∫

|x|h> 
ε

|x|–Q–εp
h dx

)(∫ 

ε

t– Q
p –εw(t) dt

)p

.

By the change of variable x = δ 
ε
y, we get

Cp‖fε‖p
Lp(Hn) ≥

(∫
|y|h>

|y|–Q–εp
h εεp dy

)(∫ 

ε

t– Q
p –εw(t) dt

)p

= ‖fε‖p
Lp(Hn)

(
εε

∫ 

ε

t– Q
p –εw(t) dt

)p

.

This implies that

εε

∫ 

ε

t– Q
p –εw(t) dt ≤ C.

Letting ε approach to , we have

∫ 


t– Q

p w(t) dt ≤ C. (.)

Moreover, when (.) is true, i.e. Hw is bounded on Lp(Hn), then by (.) and (.), we
have

‖Hw‖Lp(Hn)→Lp(Hn) =
∫ 


t– Q

p w(t) dt.

This completes the proof. �

On the Heisenberg group, the weighted Hardy operator can also turn into the n-
dimensional Hardy operator, see [, ].

Proposition . If f is a radial function and w(t) = QtQ– then Hwf (x) = Hf (x), where

Hf (x) :=


|B(, |x|h)|
∫

B(,|x|h)
f (y) dy, x ∈ H

n \ {}, (.)

is the Hardy operator on the Heisenberg group.
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Proof In fact, if f is a radial function, then

Hf (x) =


|B(, |x|h)|
∫

B(,|x|h)
f (y) dy

=


|B(, |x|h)|
∫ 



∫
S(,)

f
(
δt|x|h y′)tQ–|x|Qh dt dy′

=


�Q

∫ 



∫
S(,)

f (δtx)tQ– dt dy′

=
∫ 


f (δtx)QtQ– dt = Hwf (x). �

Denote Lp(Hn) = {f : f is radial and f ∈ Lp(Hn)}. By Theorem ., we can get the follow-
ing result.

Corollary . Let  < p ≤ ∞. Then H is bounded on Lp(Hn). Moreover,

‖H‖Lp(Hn)→Lp(Hn) =
p

p – 
,  < p < ∞,

‖H‖L∞(Hn)→L∞(Hn) = .

Theorem . Let w : [, ] → (,∞) be a function. Then Hw is bounded on BMO(Hn) if
and only if

∫ 


w(t) dt < ∞. (.)

Moreover, if (.) holds, then

‖Hw‖BMO(Hn)→BMO(Hn) =
∫ 


w(t) dt.

Proof For each t >  and ball B(x, r) ⊂ H
n, let tB(x, r) be the ball B(δtx, tr), then

|tB(x, r)| = tQ|B(x, r)|.
Suppose (.) holds. Let f ∈ BMO(Hn) and let B be a ball. Then by Fubini’s theorem, we

have

(Hwf )B =


|B|
∫

B
Hwf (x) dx

=


|B|
∫

B

∫ 


f (δtx)w(t) dt dx

=
∫ 



(


|B|
∫

B
f (δtx) dx

)
w(t) dt

=
∫ 



(


|B|
∫

tB
f (y)t–Q dy

)
w(t) dt

=
∫ 


ftBw(t) dt.
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Then


|B|

∫
B

∣∣Hwf (x) – (Hwf )B
∣∣dx

=


|B|
∫

B

∣∣∣∣
∫ 


f (δtx)w(t) dt –

∫ 


ftBw(t) dt

∣∣∣∣dx

≤ 
|B|

∫
B

∫ 



∣∣f (δtx) – ftB
∣∣w(t) dt dx

=
∫ 



(


|B|
∫

B

∣∣f (δtx) – ftB
∣∣dx

)
w(t) dt

=
∫ 



(


|tB|
∫

tB

∣∣f (y) – ftB
∣∣dy

)
w(t) dt

≤ ‖f ‖BMO(Hn)

∫ 


w(t) dt, (.)

which implies that Hw is bounded on BMO(Hn).
Conversely, if Hw is bounded on BMO(Hn). Choose

f(x) =

⎧⎪⎨
⎪⎩

, xn+ > ,
, xn+ = ,
–, xn+ < .

Then f ∈ BMO(Hn) with ‖f‖BMO(Hn) �= . Let

Hwf(x) =

⎧⎪⎨
⎪⎩

∫ 
 w(t) dt, xn+ > ,

, xn+ = ,
–

∫ 
 w(t) dt, xn+ < .

Then

Hwf(x) = f(x)
∫ 


w(t) dt.

Consequently,

∫ 


w(t) dt ≤ ‖Hw‖BMO(Hn)→BMO(Hn). (.)

Moreover, when (.) holds, then (.) and (.) imply that

‖Hw‖BMO(Hn)→BMO(Hn) =
∫ 


w(t) dt.

This completes the proof. �

Corollary . Denote

BMO
(
H

n) =
{

f : f is radial and f ∈ BMO
(
H

n)}.
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Then H is bounded on BMO(Hn) and

‖H‖BMO(Hn)→BMO(Hn) = .

3 Bounds for weighted multilinear Hardy operators on H
n

The study of multilinear averaging operators is traced back to the multilinear singular
integral operator theory [], and motivated not only the generalization of the theory of
linear ones but also their natural appearance in analysis. For a more complete account on
multilinear operators, we refer to [, ] and []. Very recently, Fu et al. [] defined a
kind of multilinear Hardy operators, we will investigate their estimates on the Heisenberg
group.

Definition . Let m ∈N and

� :
m︷ ︸︸ ︷

[, ] × [, ] × · · · × [, ] → [,∞)

be an integrable function. The weighted multilinear Hardy operator Hm
� on H

n is defined
as

Hm
�(�f )(x) :=

∫
<t,t,...,tm<

( m∏
i=

fi(δti x)

)
�(�t) d�t, x ∈H

n,

where �f := (f, f, . . . , fm), �(�t) := �(t, t, . . . , tm), d�t := dt dt · · · dtm, and fi, i = , . . . , m, are
complex-valued measurable functions on H

n. When m = , Hm
� is referred to as bilinear.

Remark . If fi, i = , , . . . , m, are radial functions and �(t, . . . , tm) = Qm ∏m
i= tQ–

i , then
Hm

�f (x) =
∏m

i= Hfi(x), where H is given by (.).

In fact, if fi, i = , , . . . , m, are radial functions, then

m∏
i=

Hfi(x) =


�m
Q |x|mQ

h

m∏
i=

∫
|yi|h<|x|h

fi(yi) dyi

=


�m
Q

m∏
i=

∫ 



∫
S(,)

fi
(
δti|x|h y′

i
)
tQ–
i dti dy′

i

=


�m
Q

m∏
i=

∫ 



∫
S(,)

fi(δti x)tQ–
i dti dy′

i

= Qm
m∏

i=

∫ 


fi(δti x)tQ–

i dt

=
∫

<t,t,...,tm<

( m∏
i=

fi(δti x)

)
Qm

m∏
i=

tQ–
i dt = H�

�f (x).

Theorem . Suppose � :
m︷ ︸︸ ︷

[, ] × [, ] × · · · × [, ] → [,∞) is a function and m ≥ .
Let  ≤ p, pi ≤ ∞, i = , . . . , m and /p = /p + · · · + /pm. Then Hm

� is bounded from
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Lp (Hn) × · · · × Lpm (Hn) to Lp(Hn) if and only if

Am :=
∫

<t,t,...,tm<

( m∏
i=

t
– Q

pi
i

)
�(�t) d�t < ∞. (.)

Moreover, if (.) holds, then

∥∥Hm
�

∥∥
Lp (Hn)×···×Lpm (Hn)→Lp(Hn) = Am. (.)

Proof For simplicity, we only consider the case m = . A similar procedure works for the
other m ≥ .

Since the case p = ∞ and pi = ∞, i = , . . . , m is trivial, it suffices to consider  ≤ p, pi < ∞,
i = , . . . , m.

Suppose (.) holds. Using Minkowski’s inequality and the change of variables δt x = y,
δt x = y, we have

∥∥H
�(f, f)

∥∥
Lp(Hn) =

(∫
Hn

∣∣∣∣
∫

<t,t<
f(δt x)f(δt x)�(t, t) dt dt

∣∣∣∣
p

dx
) 

p

≤
∫

<t,t<

(∫
Hn

∣∣f(δt x)f(δt x)
∣∣p dx

) 
p
�(t, t) dt dt.

By Hölder’s inequality with /p = /p + /p, we get

∥∥H
�(f, f)

∥∥
Lp(Hn) ≤

∫
<t,t<

∏
i=

(∫
Hn

∣∣fi(δti x)
∣∣pi dx

) 
pi

�(t, t) dt dt

= ‖f‖Lp (Hn)‖f‖Lp (Hn)

∫
<t,t<

∏
i=

t
– Q

pi
i �(t, t) dt dt.

Thus H
� maps Lp (Hn) × Lp (Hn) into Lp(Hn), and

‖H
�‖Lp (Hn)×Lp (Hn)→Lp(Hn) ≤

∫
<t,t<

∏
i=

t
– Q

pi
i �(t, t) dt dt = A. (.)

Conversely, suppose that H
� is a bounded operator from Lp (Hn) × Lp (Hn) to Lp(Hn).

For sufficiently small ε ∈ (, ), we set

f ε
i (x) =

⎧⎨
⎩

, |x|h ≤ ,

|x|–
Q
pi

– p
pi

ε

h , |x|h > ,
i = , .

A standard integral calculation gives

∥∥f ε
i
∥∥pi

Lpi (Hn) =
wQ

εp
, i = , .

And

H
�

(
f ε
 , f ε


)
(x) =

⎧⎨
⎩

, |x|h ≤ ,

|x|–
Q
p –ε

h
∫ 


|x|h

∫ 


|x|h
t

– Q
p

– p
p

ε

 t
– Q

p
– p

p
ε

 �(t, t) dt dt, |x|h > .
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Consequently, we have

∥∥H
�

(
f ε
 , f ε


)∥∥

Lp(Hn)

=
{∫

|x|h>
|x|–Q–εp

h

(∫ 


|x|h

∫ 


|x|h

t
– Q

p
– p

p
ε

 t
– Q

p
– p

p
ε

 �(t, t) dt dt

)p

dx
} 

p

≥
{∫

|x|h> 
ε

|x|–Q–εp
h

(∫ 

ε

∫ 

ε

t
– Q

p
– p

p
ε

 t
– Q

p
– p

p
ε

 �(t, t) dt dt

)p

dx
} 

p

=
(∫

|y|h>
|y|–Q–εp

h εQ+εpε–Q dy
) 

p
(∫ 

ε

∫ 

ε

t
– Q

p
– p

p
ε

 t
– Q

p
– p

p
ε

 �(t, t) dt dt

)

=
(

wQ

εp

) 
p
εε

∫ 

ε

∫ 

ε

t
– Q

p
– p

p
ε

 t
– Q

p
– p

p
ε

 �(t, t) dt dt

=
(

wQ

εp

) 
p

(
wQ

εp

) 
p

εε

∫ 

ε

∫ 

ε

t
– Q

p
– p

p
ε

 t
– Q

p
– p

p
ε

 �(t, t) dt dt

=
∥∥f ε


∥∥

Lp (Hn)

∥∥f ε

∥∥

Lp (Hn)ε
ε

∫ 

ε

∫ 

ε

t
– Q

p
– p

p
ε

 t
– Q

p
– p

p
ε

 �(t, t) dt dt.

Therefore,

∥∥H
�

∥∥
Lp (Hn)×Lp (Hn)→Lp(Hn) ≥ εε

∫ 

ε

∫ 

ε

t
– Q

p
– p

p
ε

 t
– Q

p
– p

p
ε

 �(t, t) dt dt.

Since εε →  as ε → , we obtain

A ≤ ‖H
�‖Lp (Hn)×Lp (Hn)→Lp(Hn) < ∞.

This inequality and (.) yield (.). The proof is complete. �

4 Bounds for weighted Cesàro operators on H
n

Given a nonnegative function w : [, ] → (,∞). For a measurable complex-valued func-
tion f on H

n, the adjoint operator of the weighted Hardy operator, the weighted Cesàro
operator is defined as

Cωf (x) :=
∫ 


f (δ/tx)t–Qω(t) dt, x ∈H

n,

which satisfies
∫
Hn

f (x)(Hωg)(x) dx =
∫
Hn

g(x)(Cωf )(x) dx.

Here f ∈ Lp(Hn), g ∈ Lq(Hn),  < p < ∞, q = p/(p – ), Hω is bounded on Lp(Hn), and Cω is
bounded on Lq(Hn).

Theorem . Let w : [, ] → (,∞) be a function and let  ≤ q ≤ ∞. Then Cw is bounded
on Lq(Hn) if and only if

∫ 


t–Q(–/q)w(t) dt < ∞. (.)
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Moreover, if (.) holds, then

‖Cw‖Lq(Hn)→Lq(Hn) =
∫ 


t–Q(–/q)w(t) dt.

Theorem . Let w : [, ] → (,∞) be a function. Then Cw is bounded on BMO(Hn) if
and only if

∫ 


t–Qw(t) dt < ∞. (.)

Moreover, if (.) holds, then

‖Cw‖BMO(Hn)→BMO(Hn) =
∫ 


t–Qw(t) dt.

We also define the weighted multilinear Cesàro operator Cm
� on H

n as

Cm
�(�f )(x) :=

∫
<t,t,...,tm<

( m∏
i=

fi(δ/ti x)

)
�(�t) d�t, x ∈H

n.

Theorem . Suppose � :
m︷ ︸︸ ︷

[, ] × [, ] × · · · × [, ] → [,∞) is a function and m ≥ .
Let  ≤ q, qi ≤ ∞, i = , . . . , m, and /q = /q + · · · + /qm. Then Cm

� is bounded from
Lq (Hn) × · · · × Lqm (Hn) to Lq(Hn) if and only if

Cm :=
∫

<t,t··· ,tm<

( m∏
i=

t–Q(–/qi)
i

)
�(�t) d�t < ∞. (.)

Moreover, if (.) holds, then

‖Cm
�‖Lq (Hn)×···×Lqm (Hn)→Lq(Hn) = Cm. (.)

The proof of the theorem in Section  is immediate from the proof of Section  and
Section .
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