20 research outputs found

    Structure of the Influenza Virus Hemagglutinin

    No full text

    Exercise and Peripheral Arteriosclerosis

    No full text
    Adaptation of a healthy lifestyle including adequate daily physical activity is shown to reduce 80% of cardiovascular mortality and 40% of cancer-related deaths. A large body of evidence exists proving that this relationship is dose dependent, and even half of the recommended normal physical activity yields significant risk reduction. There has been no medical therapy that would provide such high percentages of reduction in mortality to date. The World Health Organization, therefore, has started an initiative to implement exercise into daily life as a primary prevention measure. Herein, we will focus on the effects of exercise on the vasculature, mainly the peripheral vasculature, in the context of atherosclerotic disease. Exercise has a fundamental role in the pathogenesis, diagnosis, and treatment of atherosclerotic vascular disease. It exerts a protective effect against the development of atherosclerosis irrespective of other cardiovascular risk factors. Additionally, exercise induces changes in vascular hemodynamics helping us to elucidate the presence of obscure vascular involvement. Once again, exercise is the main treatment modality in peripheral arterial disease with accumulating evidence to reduce symptoms and improve both exercise capacity and cardiovascular symptoms

    The ecology and biogeochemistry of stream biofilms

    Get PDF
    Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems

    High density lipoproteins and atherosclerosis: Emerging aspects

    Get PDF
    High density lipoproteins (HDL) promote the efflux of excess cholesterol from peripheral tissues to the liver for excretion. This ability is responsible for the most relevant antiatherogenic effect of HDL. The ability of HDL to promote cholesterol efflux results also in the modulation of a series of responses in the immune cells involved in atherosclerosis, including monocyte-macrophages, B and T lymphocytes. Furthermore, during inflammation, the composition of this class of lipoproteins varies to a large extent, thus promoting the formation of dysfunctional HDL. The aim of this review is to discuss the emerging role of HDL in modulating the activity of immune cells and immune-inflammatory mediators during atherogenesis. © 2012 JGC All rights reserved
    corecore