13 research outputs found

    Consequences of prairie fragmentation on the progeny sex ratio of a gynodioecious species, <em>Lobelia spicata</em> (Campanulaceae)

    No full text
    Habitat fragmentation of prairie ecosystems has resulted in increased isolation and decreased size of plant populations. In large populations, frequency-dependent selection is expected to maintain genetic diversity of sex determining factors associated with gynodioecy, that is, nuclear restorer genes that reverse cytoplasmic male sterility (nucleocytoplasmic gynodioecy). However, genetic drift will have a greater influence on small isolated populations that result from habitat fragmentation. The genetic model for nucleocytoplasmic gynodioecy implies that the proportion of female progeny produced by hermaphroditic and female plants will show more extreme differences in populations with reduced allelic diversity, and that restoration of male function will increase with inbreeding. We investigated potential impacts of effects resulting from reduced population sizes by comparison of progeny sex ratios produced by female and hermaphroditic plants in small and large populations of the gynodioecious prairie species, Lobelia spicata. A four-way contingency analysis of the impact of population size, population sex ratio, and maternal gender on progeny sex ratios showed that progeny sex ratios of hermaphroditic plants were strongly influenced by population size, whereas progeny sex ratios of female plants were strongly influenced by population sex ratio. Further, analysis of variation in progeny-type distribution indicated decreased restoration and increased loss of male function in smaller and isolated populations. These results are consistent with reduced allelic diversity or low allelic frequency at restorer loci in small and isolated populations. The consequent decrease in male function has the potential to impede seed production in these fragmented prairies.</p

    The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) I: S allele diversity in a natural population

    No full text
    Twenty-six individuals of the sporophytic self-incompatible (SSI) weed, Senecio squalidus were crossed in a full diallel to determine the number and frequency of S alleles in an Oxford population. Incompatibility phenotypes were determined by fruit-set results and the mating patterns observed fitted a SSI model that allowed us to identify six S alleles. Standard population S allele number estimators were modified to deal with S allele data from a species with SSI. These modified estimators predicted a total number of approximately six S alleles for the entire Oxford population of S. squalidus. This estimate of S allele number is low compared to other estimates of S allele diversity in species with SSI. Low S allele diversity in S. squalidus is expected to have arisen as a consequence of a disturbed population history since its introduction and subsequent colonisation of the British Isles. Other features of the SSI system in S. squalidus were also investigated: (a) the strength of self-incompatibility response; (b) the nature of S allele dominance interactions; and (c) the relative frequencies of S phenotypes. These are discussed in view of the low S allele diversity estimates and the known population history of S. squalidus.

    The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) II: A spatial autocorrelation approach to determining mating behaviour in the presence of low S allele diversity

    No full text
    We recently estimated that as few as six S alleles represent the extent of S locus diversity in a British population of the self-incompatible (SI) coloniser Senecio squalidus (Oxford Ragwort). Despite the predicted constraints to mating imposed by such a low number of S alleles, S. squalidus maintains a strong sporophytic self-incompatibility (SSI) system and there is no evidence for a breakdown of SSI or any obvious negative reproductive consequences for this highly successful coloniser. The present paper assesses mating behaviour in an Oxford S. squalidus population through observations of its effect on spatial patterns of genetic diversity and thus the extent to which it is responsible for ameliorating the potentially detrimental reproductive consequences of low S allele diversity in British S. squalidus. A spatial autocorrelation (SA) treatment of S locus and allozyme polymorphism data for four loci indicates that mating events regularly occur at all the distance classes examined from 60 to 480 m throughout the entire sample population. Less SA is observed for S locus data than for allozyme data in accordance with the hypothesis that SSI and low diversity at the S locus are driving these large-scale mating events. The limited population structure at small distances of 60 m and less observed for SA analysis of the Me-2 locus and by F-statistics for all the allozyme data, is evidence of some local relatedness due to limited seed and pollen dispersal in S. squalidus. However, the overall impression of mating dynamics in this S. squalidus population is that of ample potential mating opportunities with many individuals at large population scales, indicating that reproductive success is not seriously affected by few S alleles available for mating interactions.
    corecore