10 research outputs found

    Entry of Yersinia pestis into the Viable but Nonculturable State in a Low-Temperature Tap Water Microcosm

    Get PDF
    Yersinia pestis, the causative agent of plague, has caused several pandemics throughout history and remains endemic in the rodent populations of the western United States. More recently, Y. pestis is one of several bacterial pathogens considered to be a potential agent of bioterrorism. Thus, elucidating potential mechanisms of survival and persistence in the environment would be important in the event of an intentional release of the organism. One such mechanism is entry into the viable but non-culturable (VBNC) state, as has been demonstrated for several other bacterial pathogens. In this study, we showed that Y. pestis became nonculturable by normal laboratory methods after 21 days in a low-temperature tap water microcosm. We further show evidence that, after the loss of culturability, the cells remained viable by using a variety of criteria, including cellular membrane integrity, uptake and incorporation of radiolabeled amino acids, and protection of genomic DNA from DNase I digestion. Additionally, we identified morphological and ultrastructural characteristics of Y. pestis VBNC cells, such as cell rounding and large periplasmic spaces, by electron microscopy, which are consistent with entry into the VBNC state in other bacteria. Finally, we demonstrated resuscitation of a small number of the non-culturable cells. This study provides compelling evidence that Y. pestis persists in a low-temperature tap water microcosm in a viable state yet is unable to be cultured under normal laboratory conditions, which may prove useful in risk assessment and remediation efforts, particularly in the event of an intentional release of this organism

    IL-33 and ST2 levels in chronic kidney disease: Associations with inflammation, vascular abnormalities, cardiovascular events, and survival

    No full text
    Increased inflammation, associated with the increase in chronic kidney disease (CKD) stage, has a very important influence in vascular injury and cardiovascular diseases. In this study, we aimed to investigate the levels of IL-33 and ST2 in the different stages of CKD and to determine their effect on vascular damage and cardiovascular events (CVE).This was an observational cohort study in which serum IL-33 and ST2 were obtained from 238 CKD (stages 1-5) patients. We examined the changes in IL-33/ST2 levels in CKD patients, as well as the association with a surrogate of endothelial dysfunction. Fatal and non-fatal CVE were recorded for a mean of 24 months. We also performed a COX regression analysis to determine the association of IL-33/ST2 levels with CVE and survival.IL-33 and ST2 levels were significantly increased and estimated glomerular filtration rates (eGFR) were decreased. Flow-mediated dilatation (FMD) was significantly decreased from stage 1 to stage 5 CKD. IL-33 and ST2 levels were associated with FMD, and ST2 was a predictor. Multivariate Cox analysis showed that the presence of diabetes mellitus, smoking, and proteinuria and haemoglobin, Hs-CRP, IL-33, and ST2 were associated with the risk of CVE. Kaplan-Meier survival curves showed that patients with IL-33 and ST2 levels below the median value (IL-33 = 132.6 ng/L, ST2 = 382.9 pg/mL) had a higher cumulative survival compared with patients who had IL-33 and ST2 levels above the median value (log-rank test, p = 0.000).This is the first study that demonstrates that serum IL-33 and ST2 are associated with vascular injury, cardiovascular events, and survival in CKD patients
    corecore