21 research outputs found
Variations in O-Antigen Biosynthesis and O-Acetylation Associated with Altered Phage Sensitivity in Escherichia coli 4s
Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA Involves Three Easily Distinguished 4-Epimerase Enzymes, Gne, Gnu and GnaB
We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco- and galacto-configuration at C4 of different N-acetylhexosamines. Their major biological roles are the formation of UDP-GalNAc, UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) and undecaprenyl pyrophosphate-N-acetylgalactosamine (UndPP-GalNAc) from the corresponding glucose forms. We propose that the clade of UDP-GlcNAcA epimerase genes be named gnaB and the clade of UndPP-GlcNAc epimerase genes be named gnu, while the UDP-GlcNAc epimerase genes retain the name gne. The Gne epimerases, as now defined after exclusion of those to be named GnaB or Gnu, are in the same clade as the GalE 4-epimerases for inter-conversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). This work brings clarity to an area that had become quite confusing. The identification of distinct enzymes for epimerisation of UDP-GlcNAc, UDP-GlcNAcA and UndPP-GlcNAc will greatly facilitate allocation of gene function in polysaccharide gene clusters, including those found in bacterial genome sequences. A table of the accession numbers for the 295 proteins used in the analysis is provided to enable the major tree to be regenerated with the inclusion of additional proteins of interest. This and other suggestions for annotation of 4-epimerase genes will facilitate annotation
Involvement of an octose ketoreductase and two acyltransferases in the biosynthesis of paulomycins
Genetic Diversity of O-Antigens in Hafnia alvei and the Development of a Suspension Array for Serotype Detection
Hafnia alvei is a facultative and rod-shaped gram-negative bacterium that belongs to the Enterobacteriaceae family. Although it has been more than 50 years since the genus was identified, very little is known about variations among Hafnia species. Diversity in O-antigens (O-polysaccharide, OPS) is thought to be a major factor in bacterial adaptation to different hosts and situations and variability in the environment. Antigenic variation is also an important factor in pathogenicity that has been used to define clones within a number of species. The genes that are required to synthesize OPS are always clustered within the bacterial chromosome. A serotyping scheme including 39 O-serotypes has been proposed for H. alvei, but it has not been correlated with known OPS structures, and no previous report has described the genetic features of OPS. In this study, we obtained the genome sequences of 21 H. alvei strains (as defined by previous immunochemical studies) with different lipopolysaccharides. This is the first study to show that the O-antigen gene cluster in H. alvei is located between mpo and gnd in the chromosome. All 21 of the OPS gene clusters contain both the wzx gene and the wzy gene and display a large number of polymorphisms. We developed an O serotype-specific wzy-based suspension array to detect all 21 of the distinct OPS forms we identified in H. alvei. To the best of our knowledge, this is the first report to identify the genetic features of H. alvei antigenic variation and to develop a molecular technique to identify and classify different serotypes
