25 research outputs found
VEGF receptors on PC12 cells mediate transient activation of ERK1/2 and Akt: comparison of nerve growth factor and vascular endothelial growth factor
Vascular endothelial growth factor (VEGF) and endostatin are angiogenic and anti-angiogenic molecules, respectively, that have been implicated in neurogenesis and neuronal survival. Using alkaline phosphatase fusion proteins, we show that the PC12 neuronal cell line contains cell membrane receptors for VEGF but not for endostatin and the collagen XV endostatin homologue. Immunocytochemistry confirmed that proliferating and differentiated PC12 cells express VEGF receptors 1, 2 and neuropilin-1. While no functional effects of VEGF on PC12 cell proliferation and differentiation could be observed, a slight VEGF-induced reduction of caspase-3 activity in differentiated apoptotic PC12 cells was paralleled by transient activation of ERK1/2 and Akt. In direct comparison, nerve growth factor proved to be a strikingly more potent neuroprotective agent than VEGF
A full-mouth disinfection approach to nonsurgical periodontal therapy - Prevention of reinfection from bacterial reservoirs
link_to_subscribed_fulltex
Design of a variant of vascular endothelial growth factor-A (VEGF-A) antagonizing KDR/Flk-1 and Flt-1.
Item does not contain fulltextBecause of its central role in pathological angiogenesis, vascular endothelial growth factor (VEGF) has become a major target for anti-angiogenic therapies. We report here the construction of a heterodimeric antagonistic VEGF variant (HD-VEGF). In this antagonist, binding domains for the VEGF-receptors KDR/Flk-1 and Flt-1 are present at one pole of the dimer, whereas the other pole carries domain swap mutations, which prevent binding to either receptor. As HD-VEGF can only bind to monomeric receptors, it does not lead to signal transduction. Moreover, it antagonizes VEGF and possibly other members of the VEGF family, which are KDR/Flk-1 and Flt-1 ligands. We show here that HD-VEGF is a potent inhibitor of VEGF-mediated proliferation and tissue factor induction in endothelial cell cultures, requiring only a 20-fold and a 4-fold excess, respectively, to block the activity of wtVEGF completely. A 4-fold excess of HD-VEGF over wtVEGF was also sufficient to abrogate vascular permeability as determined in the Miles assay in vivo. Furthermore, HD-VEGF inhibited fetal bone angiogenesis in an ex vivo assay. Thus, HD-VEGF blocks KDR- and Flt-1-mediated VEGF activities that are crucial in the angiogenic process and is therefore a promising, multipotent compound in the treatment of angiogenesis-related diseases