9 research outputs found
Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, Northern India: defining the timing of Late Quaternary glaciation
The timing of glaciation in the Lahul Himalaya of northern India was ascertained using the concentrations of cosmogenic Be-10 and Al-26 from boulders on moraines and drumlins, and from glacially polished bedrock surfaces. Five glacial stages were identified: Sonapani I and II, Kulti, Batal and Chandra. Of these, cosmogenic exposure ages were obtained on samples representative of the Batal and Kulti glacial cycles. Stratigraphical relationships indicate that the Sonapani I and II are younger. No age was obtained for the Chandra glacial advance. Batal Glacial Stage deposits are found throughout the valley, indicating the presence of an extensive valley glacial system. During the Kulti Stage, glaciers advanced ca. 10 km beyond their current positions. Moraines produced during the Batal Stage, ca. 12-15.5 ka, are coeval with the Northern Hemisphere Late-glacial Interstadial (Bolling/Allerod). Deglaciation of the Batal Glacial Stage was completed by ca. 12 ka and was followed by the Kulti Glacial Stage during the early Holocene, at ca. 10-11.4 ka. On millennial time-scales, glacier oscillations in the Lahul Himalaya apparently reflect periods of positive mass-balance coincident with times of increased insolation. During these periods the South Asian summer monsoon strengthened and/or extended its influence further north and west, thereby enhancing high-altitude summer snowfall. Copyright (C) 2001 John Wiley & Sons, Ltd.</p
Chinguetti â terrestrial age and pre-atmospheric radius.
Published versio
Recommended from our members
The impact and recovery of asteroid 2018 LA
The June 2, 2018, impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. 23 meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as a HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g/cm3, a relatively low albedo pv ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth-impacting orbit via the v6 resonance. The impact that ejected 2018 LA in an orbit towards Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U-Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb-Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin
Timing and climate forcing of volcanic eruptions for the past 2,500 years.
Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing