13 research outputs found

    Functional Diversity of Human Basic Helix-Loop-Helix Transcription Factor TCF4 Isoforms Generated by Alternative 5′ Exon Usage and Splicing

    Get PDF
    BACKGROUND: Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2) is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG). While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. PRINCIPAL FINDINGS: In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5' exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. CONCLUSIONS: Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence about the functional diversity of the alternative TCF4 protein isoforms

    TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders

    Get PDF
    TCF4 is involved in neurodevelopment, and intergenic and intronic variants in or close to the TCF4 gene have been associated with susceptibility to schizophrenia. However, the functional role of TCF4 at the level of gene expression and relationship to severity of core psychotic phenotypes are not known. TCF4 mRNA expression level in peripheral blood was determined in a large sample of patients with psychosis spectrum disorders (n=596) and healthy controls (n=385). The previously identified TCF4 risk variants (rs12966547 (G), rs9960767 (C), rs4309482 (A), rs2958182 (T) and rs17512836 (C)) were tested for association with characteristic psychosis phenotypes, including neurocognitive traits, psychotic symptoms and structural magnetic resonance imaging brain morphometric measures, using a linear regression model. Further, we explored the association of additional 59 single nucleotide polymorphisms (SNPs) covering the TCF4 gene to these phenotypes. The rs12966547 and rs4309482 risk variants were associated with poorer verbal fluency in the total sample. There were significant associations of other TCF4 SNPs with negative symptoms, verbal learning, executive functioning and age at onset in psychotic patients and brain abnormalities in total sample. The TCF4 mRNA expression level was significantly increased in psychosis patients compared with controls and positively correlated with positive- and negative-symptom levels. The increase in TCF4 mRNA expression level in psychosis patients and the association of TCF4 SNPs with core psychotic phenotypes across clinical, cognitive and brain morphological domains support that common TCF4 variants are involved in psychosis pathology, probably related to abnormal neurodevelopment

    Association of Transcription Factor 4 (TCF4) variants with schizophrenia and intellectual disability

    Full text link
    Genome wide association studies (GWAS) have revolutionized the study of complex diseases and have uncovered common genetic variants associated with an increased risk for major psychiatric disorders. A recently published schizophrenia GWAS replicated earlier findings implicating common variants in Transcription factor 4 (TCF4) as susceptibility loci for schizophrenia. By contrast, loss of function TCF4 mutations, although rare, cause Pitt-Hopkins syndrome (PTHS); a disorder characterized by intellectual disability (ID), developmental delay and behavioral abnormalities. TCF4 mutations have also been described in individuals with ID and non-syndromic neurodevelopmental disorders. TCF4 is a member of the basic helix-loop-helix (bHLH) family of transcription factors that regulate gene expression at E-box-containing promoters and enhancers. Accordingly, TCF4 has an important role during brain development and can interact with a wide array of transcriptional regulators including some proneural factors. TCF4 may, therefore, participate in the transcriptional networks that regulate the maintenance and differentiation of distinct cell types during brain development. Here, we review the role of TCF4 variants in the context of several distinct brain disorders associated with impaired cognition

    Evaluating the links between schizophrenia and sleep and circadian rhythm disruption

    Full text link

    Associations between TCF4 Gene Polymorphism and Cognitive Functions in Schizophrenia Patients and Healthy Controls

    No full text
    The SNP rs2958182 was reported to be significantly associated with schizophrenia (SCZ) in Han Chinese. This study examined this SNP's associations with cognitive functions in 580 SCZ patients and 498 controls. Cognitive functions were assessed using the Wechsler Adult Intelligence Scale-Revised (WAIS-RC), the Attention Network Task (ANT), the Stroop task, the dot pattern expectancy (DPX), task and the N-back working memory task. Results showed significant or marginally significant interaction effects between genotype and diagnosis status on IQ (P=0.011) and attention-related tasks (ie, the forward digit span of WAIS-RC, P=0.005; the ANT conflict effect; P=0.020, and its ratios over mean reaction time (RT), P=0.036; the Stroop conflict effect, P=0.032, and its ratios over mean RT, P=0.062; and the DPX task's error rate under the BX condition, P<0.001, and the error rate of BX minus the error rate of AY (BX−AY), P=0.002). There were no such interaction effects on the measures of working memory (all P-values >0.05). Further analysis of the significant genotype-by-diagnosis interactions showed that the risk (T) allele was associated with better performance on cognitive tasks in patients but with worse performance in controls. These results seem to indicate that the association between this SNP and selected cognitive functions may be of an inverted U-shaped pattern. Future research is needed to replicate these results and to explore the biochemical mechanisms behind this association
    corecore