24 research outputs found

    Array comparative genomic hybridisation (aCGH) analysis of premenopausal breast cancers from a nuclear fallout area and matched cases from Western New York

    Get PDF
    High-resolution array comparative genomic hybridisation (aCGH) analysis of DNA copy number aberrations (CNAs) was performed on breast carcinomas in premenopausal women from Western New York (WNY) and from Gomel, Belarus, an area exposed to fallout from the 1986 Chernobyl nuclear accident. Genomic DNA was isolated from 47 frozen tumour specimens from 42 patients and hybridised to arrays spotted with more than 3000 BAC clones. In all, 20 samples were from WNY and 27 were from Belarus. In total, 34 samples were primary tumours and 13 were lymph node metastases, including five matched pairs from Gomel. The average number of total CNAs per sample was 76 (range 35–134). We identified 152 CNAs (92 gains and 60 losses) occurring in more than 10% of the samples. The most common amplifications included gains at 8q13.2 (49%), at 1p21.1 (36%), and at 8q24.21 (36%). The most common deletions were at 1p36.22 (26%), at 17p13.2 (26%), and at 8p23.3 (23%). Belarussian tumours had more amplifications and fewer deletions than WNY breast cancers. HER2/neu negativity and younger age were also associated with a higher number of gains and fewer losses. In the five paired samples, we observed more discordant than concordant DNA changes. Unsupervised hierarchical cluster analysis revealed two distinct groups of tumours: one comprised predominantly of Belarussian carcinomas and the other largely consisting of WNY cases. In total, 50 CNAs occurred significantly more commonly in one cohort vs the other, and these included some candidate signature amplifications in the breast cancers in women exposed to significant radiation. In conclusion, our high-density aCGH study has revealed a large number of genetic aberrations in individual premenopausal breast cancer specimens, some of which had not been reported before. We identified a distinct CNA profile for carcinomas from a nuclear fallout area, suggesting a possible molecular fingerprint of radiation-associated breast cancer

    The novel object recognition memory: neurobiology, test procedure, and its modifications

    Get PDF
    Animal models of memory have been considered as the subject of many scientific publications at least since the beginning of the twentieth century. In humans, memory is often accessed through spoken or written language, while in animals, cognitive functions must be accessed through different kind of behaviors in many specific, experimental models of memory and learning. Among them, the novel object recognition test can be evaluated by the differences in the exploration time of novel and familiar objects. Its application is not limited to a field of research and enables that various issues can be studied, such as the memory and learning, the preference for novelty, the influence of different brain regions in the process of recognition, and even the study of different drugs and their effects. This paper describes the novel object recognition paradigms in animals, as a valuable measure of cognition. The purpose of this work was to review the neurobiology and methodological modifications of the test commonly used in behavioral pharmacology

    Atypical ductal hyperplasia is a multipotent precursor of breast carcinoma

    Get PDF
    The current model for breast cancer progression proposes independent “low‐grade (LG) like” and “high‐grade (HG) like” pathways but lacks a known precursor to HG cancer. We applied low coverage whole genome sequencing to atypical ductal hyperplasia (ADH) with and without carcinoma to shed light on breast cancer progression. 14/20 isolated ADH cases harboured at least one copy number alteration (CNA), but had fewer aberrations than LG or HG ductal carcinoma in situ (DCIS). ADH carried more HG‐like CNA than LG DCIS (eg. 8q gain). Correspondingly, 64% (7/11) of ADH cases with synchronous HG carcinoma were clonally related, similar to LG carcinoma (67%, 6/9). This study represents a significant shift in our understanding of breast cancer progression, with ADH as a common precursor lesion to the independent “low‐grade like” and “high‐grade like” pathways. These data suggest that ADH can be a precursor of HG breast cancer and that LG and HG carcinomas can evolve from a similar ancestor lesion. We propose that although LG DCIS may be committed to a LG molecular pathway, ADH may remain multipotent, progressing to either LG or HG carcinoma. This multipotent nature suggests that some ADH could be more clinically significant than LG DCIS, requiring biomarkers for personalising management

    Genomic Profiling of Submucosal-Invasive Gastric Cancer by Array-Based Comparative Genomic Hybridization

    Get PDF
    Genomic copy number aberrations (CNAs) in gastric cancer have already been extensively characterized by array comparative genomic hybridization (array CGH) analysis. However, involvement of genomic CNAs in the process of submucosal invasion and lymph node metastasis in early gastric cancer is still poorly understood. In this study, to address this issue, we collected a total of 59 tumor samples from 27 patients with submucosal-invasive gastric cancers (SMGC), analyzed their genomic profiles by array CGH, and compared them between paired samples of mucosal (MU) and submucosal (SM) invasion (23 pairs), and SM invasion and lymph node (LN) metastasis (9 pairs). Initially, we hypothesized that acquisition of specific CNA(s) is important for these processes. However, we observed no significant difference in the number of genomic CNAs between paired MU and SM, and between paired SM and LN. Furthermore, we were unable to find any CNAs specifically associated with SM invasion or LN metastasis. Among the 23 cases analyzed, 15 had some similar pattern of genomic profiling between SM and MU. Interestingly, 13 of the 15 cases also showed some differences in genomic profiles. These results suggest that the majority of SMGCs are composed of heterogeneous subpopulations derived from the same clonal origin. Comparison of genomic CNAs between SMGCs with and without LN metastasis revealed that gain of 11q13, 11q14, 11q22, 14q32 and amplification of 17q21 were more frequent in metastatic SMGCs, suggesting that these CNAs are related to LN metastasis of early gastric cancer. In conclusion, our data suggest that generation of genetically distinct subclones, rather than acquisition of specific CNA at MU, is integral to the process of submucosal invasion, and that subclones that acquire gain of 11q13, 11q14, 11q22, 14q32 or amplification of 17q21 are likely to become metastatic
    corecore