18 research outputs found

    Expansion of the clinical and neuroimaging spectrum associated with NDUFS8-related disorder.

    No full text
    Biallelic pathogenic variants in NDUFS8, a nuclear gene encoding a subunit of mitochondrial complex I, result in a mitochondrial disorder characterized by varying clinical presentations and severity. Here, we expand the neuroimaging and clinical spectrum of NDUFS8-related disorder. We present three cases from two unrelated families (a girl and two brothers) homozygous for a recurrent pathogenic NDUFS8 variant [c.460G>A, p.(Gly154Ser)], located in the [4Fe-4S] domain of the protein. One of the patients developed auto-antibody positive diabetic ketoacidosis. Brain MRIs performed in two of the three patients demonstrated diffuse cerebral and cerebellar white matter involvement including corticospinal tracts, but notably had sparing of deep gray matter structures. Our report expands the neuroimaging phenotype of NDUFS8-related disorder to include progressive leukodystrophy with increasing brainstem and cerebellar involvement, with relative sparing of the basal ganglia. In addition, we describe autoimmune diabetes in association with NDUFS8-related disorder, though the exact mechanism of this association is unclear. This paper provides a comprehensive review of case presentation and progressive neuroimaging findings of three patients from two unrelated families that have an identical pathogenic NDUFS8 variant, which expands the clinical spectrum of NDUFS8-associated neurological disease

    Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    Get PDF
    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space
    corecore