6 research outputs found

    Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris)

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 195 (2009): 375-384, doi:10.1007/s00359-009-0415-x.Adequate temporal resolution is required across taxa to properly utilize amplitude modulated acoustic signals. Among mammals, odontocete marine mammals are considered to have relatively high temporal resolution, which is a selective advantage when processing fast traveling underwater sound. However, multiple methods used to estimate auditory temporal resolution have left comparisons among odontocetes and other mammals somewhat vague. Here we present the estimated auditory temporal resolution of an adult male white-beaked dolphin, (Lagenorhynchus albirostris), using auditory evoked potentials and click stimuli. Ours is the first of such studies performed on a wild dolphin in a capture-and-release scenario. The white-beaked dolphin followed rhythmic clicks up to a rate of approximately 1125-1250 Hz, after which the modulation rate transfer function (MRTF) cut-off steeply. However, 10% of the maximum response was still found at 1450 Hz indicating high temporal resolution. The MRTF was similar in shape and bandwidth to that of other odontocetes. The estimated maximal temporal resolution of white-beaked dolphins and other odontocetes was approximately twice that of pinnipeds and manatees, and more than ten-times faster than humans and gerbils. The exceptionally high temporal resolution abilities of odontocetes are likely due primarily to echolocation capabilities that require rapid processing of acoustic cues.We wish to thank the Danish Natural Science Research Council for major financial support (grant no. 272-05-0395)

    The calcified eggshell matrix proteome of a songbird, the zebra finch (Taeniopygia guttata)

    Full text link

    Aberrant working memory processing in major depression: evidence from multivoxel pattern classification

    No full text
    Major depressive disorder (MDD) is often accompanied by severe impairments in working memory (WM). Neuroimaging studies investigating the mechanisms underlying these impairments have produced conflicting results. It remains unclear whether MDD patients show hyper- or hypoactivity in WM-related brain regions and how potential aberrations in WM processing may contribute to the characteristic dysregulation of cognition–emotion interactions implicated in the maintenance of the disorder. In order to shed light on these questions and to overcome limitations of previous studies, we applied a multivoxel pattern classification approach to investigate brain activity in large samples of MDD patients (N = 57) and matched healthy controls (N = 61) during a WM task that incorporated positive, negative, and neutral stimuli. Results showed that patients can be distinguished from healthy controls with good classification accuracy based on functional activation patterns. ROI analyses based on the classification weight maps showed that during WM, patients had higher activity in the left DLPFC and the dorsal ACC. Furthermore, regions of the default-mode network (DMN) were less deactivated in patients. As no performance differences were observed, we conclude that patients required more effort, indexed by more activity in WM-related regions, to successfully perform the task. This increased effort might be related to difficulties in suppressing task-irrelevant information reflected by reduced deactivation of regions within the DMN. Effects were most pronounced for negative and neutral stimuli, thus pointing toward important implications of aberrations in WM processes in cognition–emotion interactions in MDD

    2H-NMR Spectroscopy of Solids and Liquid Crystals

    No full text
    corecore