82 research outputs found

    Time-motion analysis of international and national level futsal

    Full text link
    Futsal is the Fèdèration de Internationale Football Association's officially recognized fivea-side indoor soccer, which although increasing in popularity worldwide, lacks the Australian or other English language research necessary to enable the growth of the sport. The purpose of this study was to establish a comprehensive overview of the demands of futsal by a time-motion analysis on 8 Australian National Team players and 10 State League Team players over 4 futsal matches. The study analyzed 6 locomotor activity categories, focusing on total distance covered, total duration of activities, total frequency of activities, effort distance, and effort duration. The national team covered a 42% greater overall distance than the state league team. In terms of relative data normalized for match duration, only the standing duration value was significantly different between the teams. Furthermore, futsal players of elite and subelite level in Australia perform a change in activity every 8-9 seconds on the court, and the national team athletes attained a higher, yet nonsignificant, average match-play velocity. This may be because of the national futsal athletes participating in an extended game duration, potentially suggesting that higher levels of competition facilitate a higher intensity of match play and greater physiological demands on individual players. Apart from the differences in timing structure and overall metabolic work, there was no real difference between the levels of competition within the Australian futsal analysis, although at higher levels of competition, there may be a need for more recovery because of the elevated intensity of the match. When comparing the data with other countries, however, Australian futsal players produce less distance and duration than Spanish futsal players. © 2011 National Strength and Conditioning Association

    Differences in lower-body stiffness between levels of netball competition

    Full text link
    © 2015 National Strength and Conditioning Association. There are many notable differences in physical and skill attributes between competition levels, especially in team sports. Stiffness is an important mechanical factor to measure when considering athletic performance and injury incidence. Active vertical stiffness (K vert) during hopping and passive stiffness during lying and standing were measured during the preseason period for 46 female netballers (24.0 ± 3.7 years, 72.2 ± 7.6 kg, 175.2 ± 6.7 cm). Participants were classified as elite, sub-elite, representative or recreational based on their current level of competition. A 1-way analysis of variance revealed that elite players possessed significantly higher K vert than recreational players (p 0.018). Large effect sizes (ES) suggested that elite players also possessed higher K vert than sub-elite (d 1.11) and representative (d 1.11) players. A number of large and moderate ES were also present when comparing the passive stiffness of elite players to their lower-ranked counterparts. The results of this study suggest that elite players possess higher levels of active stiffness when compared with their lower-ranked counterparts. The differences in stiffness levels may contribute to a player's ability to physically perform at an elite level and also provide one explanation into elevated rates of injury at higher levels of competition

    The effect of habitual exercise on respiratory-muscle function in older adults

    Full text link
    Older adults' participation in habitual exercise might be affected by alterations to respiratory mechanics such as decreased respiratory-muscle strength. This reduction can cause a decrease in efficiency of the ventilatory pump, potentially compromising exercise participation. This research examined the role of habitual exercise in respiratory-muscle function and the associated implications for exercise performance. Seventy-two healthy older adults (36 men, 64.9 ± 8.6 years, 177.2 ± 8.4 cm, 82.5 ± 11.9 kg; 36 women, 64.9 ± 9.5 years, 161.7 ± 6.4 cm, 61.6 ± 9.2 kg) undertook respiratory-function and walking-performance tests. Active men and women achieved higher scores than their inactive counterparts for all tests except spirometry, where no differences were evident. The results indicate that a significant amount of the elevated fitness level might be accounted for by increased endurance capacity of the inspiratory muscles. Inactive older individuals might be at risk for inadequate respiratory-muscle strength, so interventions should be considered

    A Comparison of Training With a Velocity Loss Threshold or to Repetition Failure on Upper-Body Strength Development in Professional Australian Footballers.

    Full text link
    PURPOSE: To compare resistance training using a velocity loss threshold with training to repetition failure on upper-body strength parameters in professional Australian footballers. METHODS: A total of 26 professional Australian footballers (23.9 [4.2] y, 189.9 [7.8] cm, 88.2 [8.8] kg) tested 1-repetition-maximum strength (FPmax) and mean barbell velocity at 85% of 1-repetition maximum on floor press (FPvel). They were then assigned to 2 training groups: 20% velocity loss threshold training (VL; n = 12, maximum-effort lift velocity) or training to repetition failure (TF; n = 14, self-selected lift velocity). Subjects trained twice per week for 3 weeks before being reassessed on FPmax and FPvel. Training volume (total repetitions) was recorded for all training sessions. No differences were present between groups on any pretraining measure. RESULTS: The TF group significantly improved FPmax (105.2-110.9 kg, +5.4%), while the VL group did not (107.5-109.2 kg, +1.6%) (P > .05). Both groups significantly increased FPvel (0.38-0.46 m·s-1, +19.1% and 0.37-0.42 m·s-1, +16.7%, respectively) with no between-groups differences evident (P > .05). The TF group performed significantly more training volume (12.2 vs 6.8 repetitions per session, P > .05). CONCLUSIONS: Training to repetition failure improved FPmax, while training using a velocity loss threshold of 20% did not. Both groups demonstrated similar improvements in FPvel despite the VL group completing 45% less total training volume than the TF group. The reduction in training volume associated with implementing a 20% velocity loss threshold may negatively impact the development of upper-body maximum strength while still enhancing submaximal movement velocity

    The relationship between lower body stiffness and injury incidence in female netballers

    Full text link
    © 2017 Informa UK Limited, trading as Taylor & Francis Group. The aim of this study was to provide contemporary information on injury rates in an elite and sub-elite netball population and to explore the relationship between lower body stiffness and lower body injuries. One elite and two sub-elite teams of female netballers (n = 29) performed the vertical hop test to assess active lower body stiffness (Kvert) and myometry to assess quasi-static stiffness. Lower body injuries were monitored via self-reporting and liaison with physiotherapists. Twelve lower body non-contact injuries were sustained by 10 players, equating to 11.29 lower body injuries per 1,000 exposure hours. The most commonly injured sites were the calf (33%) and ankle (25%). No significant differences between Kvert of injured and non-injured players were reported, however, injured elite players recorded significantly higher season mean quasi-static stiffness in the soleus (p = 0.037) and Achilles (p = 0.004) than non-injured elite players. Elite and sub-elite netball players recorded a higher injury incidence than previous reports of injuries in recreational netballers. Within the constraints of the study, relatively high stiffness of the soleus and Achilles appears to be related to lower body non-contact injury incidence in female netballers, particularly at the elite level. These results provide a basis for development of injury prevention strategies

    Validity and interunit reliability of 10 Hz and 15 Hz GPS units for assessing athlete movement demands

    Full text link
    The purpose of this study was to assess the validity and interunit reliability of 10 Hz (Catapult) and 15 Hz (GPSports) Global Positioning System (GPS) units and investigate the differences between these units as measures of team sport athlete movement demands. A team sport simulation circuit was completed by 8 trained male participants. The movement demands examined included: total distance covered (TD), average peak speed, and the distance covered, time spent, and the number of efforts performed low-speed running (0.00-13.99 km·h-1), high-speed running (14.00-19.99 km·h-1), and very highspeed running (>20.00 km·h-1). The degree of difference between the 10 Hz and the 15 Hz GPS units and validity was assessed using a paired samples t-test. Pearson's correlations were also used for validity assessment. Interunit reliability was established using percentage typical error of measurement (%TEM) and intraclass correlations. The findings revealed that 10 Hz GPS units were a valid (p > 0.05) and reliable (%TEM = 1.3%) measure of TD. In contrast, the 15 Hz GPS units exhibited lower validity for TD and average peak speed. Further, as the speed of movement increased the level of error for the 10 Hz and 15 Hz GPS units increased (% TEM = 0.8-19.9). The findings from this study suggest that comparisons should not be undertaken between 10 Hz and 15 Hz GPS units. In general, the 10 Hz GPS units measured movement demands with greater validity and interunit reliability than the 15 Hz units, however, both 10 Hz and 15 Hz units provided the improved measures of movement demands in comparison to 1 Hz and 5 Hz GPS units. © 2014 National Strength and Conditioning Association

    Power profiles of competitive and noncompetitive mountain bikers

    Full text link
    © 2017 National Strength and Conditioning Association. The performance of Olympic distance cross-country mountain bikers (XCO-MTB) is affected by constraints such as erosion of track surfaces and mass start congestion which can affect race results. Standardized laboratory assessments quantify interseasonal and intraseasonal cycling potential through the assessment of multiple physiological capacities. Therefore, this study examined whether the power profile assessment (PPA) could discriminate between competitive XCO-MTB and noncompetitive mountain bikers (NC-MTB). Second, it aimed to report normative power profile data for competitive XCO-MTB cyclists. Twenty-nine male participants were recruited across groups of XCO-MTB (n = 14) and NC-MTB (n = 15) mountain bikers. Each cyclist completed a PPA that consisted of increasing duration maximal efforts (6, 15, 30, 60, 240, and 600 seconds) that were interspersed by longer rest periods (174, 225, 330, 480, and 600 seconds) between efforts. Normative power outputs were established for XCO-MTB cyclists ranging between 13.8 ± 1.5 W·kg -1 (5-second effort) and 4.1 ± 0.6 W·kg -1 (600-second effort). No differences in absolute peak power or cadence were identified between groups across any effort length (p > 0.05). However, the XCO-MTB cyclists produced greater mean power outputs relative to body mass than the NC-MTB during the 60-second (6.9 ± 0.8 vs 6.4 ± 0.6 W·kg -1 ; p = 0.002), 240-second (4.7 ± 0.7 vs. 3.8 ± 0.4 W·kg -1 ; p < 0.001), and 600-second (4.1 ± 0.6 vs. 3.4 ± 0.3 W·kg -1 ; p < 0.001) efforts. The PPA is a useful discriminative assessment tool for XCO-MTB and highlights the importance of aerobic power for XCO-MTB performance

    The effect of water-based plyometric training on vertical stiffness and athletic performance

    Full text link
    © 2018 Sporri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Since higher vertical stiffness is related to superior athletic performance, training has traditionally been aimed at augmenting this variable to enhance neuromuscular output. However, research has linked elevated stiffness with increased injury risk, therefore, this study examined the effect of a novel training intervention on vertical stiffness and athletic performance. Vertical stiffness, jump performance and athletic performance were assessed in two randomly allocated groups, prior to, and following, an eight-week period. One group was exposed to a training intervention involving aqua-based plyometrics (n = 11) over the 8 weeks while the other acted as a control group (n = 9). The training intervention involved hopping, jumping and bounding in water at a depth of 1.2m whilst control participants performed their normal training. There were no significant changes in vertical stiffness in either group. Countermovement jump height and peak power significantly increased within the aqua plyometric group (p < 0.05). Athletic performance markers improved in the aqua plyometric group as measured using an agility and a 5-bound test exhibiting superior values at the post-test (p < 0.05). The results suggest that an aqua plyometric training program can enhance athletic performance without elevating stiffness. The increase in athletic performance is likely due to a reduction in ground reaction forces created by the buoyancy of the water, causing a shorter amortization phase and a more rapid application of concentric force. The findings from this study can inform exercise professionals and medical staff regarding the ability to enhance neuromuscular performance without elevating vertical stiffness. This has implications for improving athletic performance while concurrently minimising injury risk

    ISSN exercise & sport nutrition review: research & recommendations

    Get PDF
    Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients
    corecore