7 research outputs found

    Improving the oral bioavailability of beneficial polyphenols through designed synergies

    No full text
    A substantial and growing consumer demand exists for plant-based functional foods that improve general health and wellbeing. Amongst consumed phytochemicals, the polyphenolic compounds tend to be the most bioactive. Many commonly consumed polyphenols have been shown to have specific and potent health-promoting activities when assessed by high-throughput in vitro assays and when administered to experimental animals by injection. However, very few have been shown to have any beneficial effects in animals or man when orally consumed, because of the poor bioavailability exhibited by most polyphenols following the ingestion. Consumed polyphenols, like most pharmaceuticals, are regarded as xenobiotics by the body and must overcome many barriers, including extensive enzymatic and chemical modification during digestion and absorption, to reach their site(s) of action. This is especially true for polyphenols targeting the brain, which is protected by the tightly regulated blood–brain barrier. Interestingly, many polyphenols are also known to specifically modify some of the metabolic and transport processes that govern bioavailability. Therefore, the opportunity exists to increase the bioactivity of beneficial polyphenols by designing specific synergistic interactions with polyphenols that improve their oral bioavailability. This hypothesis and review paper will discuss some of the endogenous systems that limit the bioavailability of ingested polyphenols to the body and the brain, and the means by which bioavailability may be improved by specifically designing synergies between orally consumed polyphenols

    Biomechanische Gebiß- und KieferorthopĂ€die (Orthodontie)

    No full text

    Cardiorenal end points in a trial of aliskiren for type 2 diabetes.

    Get PDF
    Background This study was undertaken to determine whether use of the direct renin inhibitor aliskiren would reduce cardiovascular and renal events in patients with type 2 dia- betes and chronic kidney disease, cardiovascular disease, or both. Methods In a double-blind fashion, we randomly assigned 8561 patients to aliskiren (300 mg daily) or placebo as an adjunct to an angiotensin-converting\u2013enzyme inhibitor or an angiotensin-receptor blocker. The primary end point was a composite of the time to cardiovascular death or a first occurrence of cardiac arrest with resuscitation; nonfatal myocardial infarction; nonfatal stroke; unplanned hospitalization for heart failure; end-stage renal disease, death attributable to kidney failure, or the need for renal-replacement therapy with no dialysis or transplantation available or initiated; or doubling of the baseline serum creatinine level. Results The trial was stopped prematurely after the second interim efficacy analysis. After a median follow-up of 32.9 months, the primary end point had occurred in 783 patients (18.3%) assigned to aliskiren as compared with 732 (17.1%) assigned to placebo (hazard ratio, 1.08; 95% confidence interval [CI], 0.98 to 1.20; P=0.12). Effects on secondary renal end points were similar. Systolic and diastolic blood pres- sures were lower with aliskiren (between-group differences, 1.3 and 0.6 mm Hg, respectively) and the mean reduction in the urinary albumin-to-creatinine ratio was greater (between-group difference, 14 percentage points; 95% CI, 11 to 17). The proportion of patients with hyperkalemia (serum potassium level, 656 mmol per liter) was significantly higher in the aliskiren group than in the placebo group (11.2% vs. 7.2%), as was the proportion with reported hypotension (12.1% vs. 8.3%) (P<0.001 for both comparisons). Conclusions The addition of aliskiren to standard therapy with renin\u2013angiotensin system block- ade in patients with type 2 diabetes who are at high risk for cardiovascular and renal events is not supported by these data and may even be harmful

    Cardiorenal end points in a trial of aliskiren for type 2 diabetes.

    No full text
    BACKGROUND: This study was undertaken to determine whether use of the direct renin inhibitor aliskiren would reduce cardiovascular and renal events in patients with type 2 diabetes and chronic kidney disease, cardiovascular disease, or both. METHODS: In a double-blind fashion, we randomly assigned 8561 patients to aliskiren (300 mg daily) or placebo as an adjunct to an angiotensin-converting-enzyme inhibitor or an angiotensin-receptor blocker. The primary end point was a composite of the time to cardiovascular death or a first occurrence of cardiac arrest with resuscitation; nonfatal myocardial infarction; nonfatal stroke; unplanned hospitalization for heart failure; end-stage renal disease, death attributable to kidney failure, or the need for renal-replacement therapy with no dialysis or transplantation available or initiated; or doubling of the baseline serum creatinine level. RESULTS: The trial was stopped prematurely after the second interim efficacy analysis. After a median follow-up of 32.9 months, the primary end point had occurred in 783 patients (18.3%) assigned to aliskiren as compared with 732 (17.1%) assigned to placebo (hazard ratio, 1.08; 95% confidence interval [CI], 0.98 to 1.20; P=0.12). Effects on secondary renal end points were similar. Systolic and diastolic blood pressures were lower with aliskiren (between-group differences, 1.3 and 0.6 mm Hg, respectively) and the mean reduction in the urinary albumin-to-creatinine ratio was greater (between-group difference, 14 percentage points; 95% CI, 11 to 17). The proportion of patients with hyperkalemia (serum potassium level, 656 mmol per liter) was significantly higher in the aliskiren group than in the placebo group (11.2% vs. 7.2%), as was the proportion with reported hypotension (12.1% vs. 8.3%) (P<0.001 for both comparisons). CONCLUSIONS: The addition of aliskiren to standard therapy with renin-angiotensin system blockade in patients with type 2 diabetes who are at high risk for cardiovascular and renal events is not supported by these data and may even be harmful

    Plants traditionally used in age-related brain disorders (dementia): an ethanopharmacological survey

    No full text
    corecore